To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Oregon Cascades had 35 named glaciers on seven volcanoes in the 1980s, with 34 of those glaciers remaining by 2000. Here, we document the glaciers that fall into the Global Glacier Casualty List categories based on five years of field observations of these 34 glaciers. Five glaciers have disappeared, four have almost disappeared and eight are critically endangered. Thus, half of the Oregon Cascades named glaciers have disappeared, almost disappeared, or reached critically endangered status in the 21st century. Between 1980 and 2024, the May–October ablation season of the Oregon Cascades region warmed at ∼0.3°C per decade, with a 2020–24 mean temperature ∼1.7°C warmer than the 1975–84 mean. In contrast, there was no significant trend in November–April accumulation season precipitation. Given the significant rise in melt-season temperature, we attribute ongoing glacier disappearance in the Oregon Cascades to the warming climate.
We introduce a novel experimental approach for measuring Onsager coefficients in steady-state multiphase flow through porous media, leveraging the fluctuation–dissipation theorem to analyse saturation fluctuations. This method provides a new tool for probing transport properties in porous media, which could aid in the characterisation of key macroscopic coefficients such as relative permeability. The experimental set-up consists of a steady-state flow system in which two incompressible fluids are simultaneously injected into a modified Hele-Shaw cell, allowing direct visualisation of the dynamics through optical imaging. By computing the temporal correlations of saturation fluctuations, we extract Onsager coefficients that govern the coupling between phase fluxes. Additionally, we have performed a statistical analysis of the fluctuations in the derivative of saturation under different flow conditions. This analysis reveals that while the fluctuations follow Gaussian statistics up to 2–3 standard deviations, they exhibit heavy tails beyond this range. This work provides an experimental foundation for recent theoretical developments in the extention of non-equilibrium thermodynamics to multiphase porous media flows. By linking microscopic fluctuations to macroscopic transport behaviour, our approach offers a new perspective that may complement existing techniques in the study of multiphase flow, making it relevant to both statistical physics and the broader fluid mechanics community.
We present an initial assessment of all-season Arctic sea ice thickness estimates from ICESat-2 by combining freeboard retrievals with all-season SnowModel-LG snow loading. ICESat-2 captures the key regional and seasonal patterns of Arctic sea ice variability and shows good agreement with CryoSat-2 all-season estimates, including regional patterns of inter-annual variability in summer ice thickness. ICESat-2 shows consistently thicker ice compared to CryoSat-2 across the western coastal Arctic, while CryoSat-2 shows some periods of thicker ice across the Central Arctic, largely consistent with winter thickness biases. Validation against upward-looking sonar moorings, IceBird-2019 airborne observations and MOSAiC buoy data highlights generally strong performance across a range of conditions, although seasonal biases linked to snow loading, freeboard differences and ice density assumptions persist. The SnowModel-LG and NESOSIM snow accumulation models perform well across the validation datasets, but do not consistently add skill beyond the modified Warren climatology. Experimental ICESat-2/CryoSat-2 dual altimetry winter snow depths show strong performance relative to existing products and future work should extend these into summer for further assessments. Overall, our analysis supports the viability of an all-season ICESat-2-derived thickness record.
Near-shore marine habitats are well-documented as diverse and productive social-ecological systems; their degradation and loss have led to growing interest in marine restoration. However, the literature offers limited consideration of the interactions between these projects and stakeholders and local communities. We present a case study showing how a stakeholder engagement strategy ultimately led to the co-production of a marine restoration project among scientists, stakeholders and local communities. Alongside biological recovery, we present the complex social, logistical and ecological lessons learned through this stakeholder engagement strategy. Principally, these relate to how the success of the project hinged on the point at which the project was co-developed with the input of local communities and strategic stakeholders, rather than in a disconnected, independent manner. This project demonstrates that for marine restoration to truly be successful, projects need to engage and work with local people from the outset, through open and early stakeholder engagement and particularly with the people possibly impacted by its presence. Projects need to be created not just for ecological design but also to be relevant and beneficial to a wide range of people. What we show here is that co-producing a project with communities and stakeholders can be complex but lead to long-term sustainability and support for the project, with strong ecological outcomes. To achieve this requires an open and flexible approach. Finally, this work showcases how the restoration of marine habitats can be achieved within a social-ecological system and lead to benefits for people and the planet.
The objective of this work is to investigate the unexplored laminar-to-turbulent transition of a heated flat-plate boundary layer with a fluid at supercritical pressure. Two temperature ranges are considered: a subcritical case, where the fluid remains entirely in the liquid-like regime, and a transcritical case, where the pseudo-critical (Widom) line is crossed and pseudo-boiling occurs. Fully compressible direct numerical simulations are used to study (i) the linear and nonlinear instabilities, (ii) the breakdown to turbulence, and (iii) the fully developed turbulent boundary layer. In the transcritical regime, two-dimensional forcing generates not only a train of billow-like structures around the Widom line, resembling Kelvin–Helmholtz instability, but also near-wall travelling regions of flow reversal. These spanwise-oriented billows dominate the early nonlinear stage. When high-amplitude subharmonic three-dimensional forcing is applied, staggered $\Lambda$-vortices emerge more abruptly than in the subcritical case. However, unlike the classic H-type breakdown under zero pressure gradient observed in ideal-gas and subcritical regimes, the H-type breakdown is triggered by strong shear layers caused by flow reversals – similar to that observed in adverse pressure gradient boundary layers. Without oblique wave forcing, transition is only slightly delayed and follows a naturally selected fundamental breakdown (K-type) scenario. Hence in the transcritical regime, it is possible to trigger nonlinearities and achieve transition to turbulence relatively early using only a single two-dimensional wave that strongly amplifies background noise. In the fully turbulent region, we demonstrate that variable-property scaling accurately predicts turbulent skin-friction and heat-transfer coefficients.
The present work aims at exploring the scale-by-scale kinetic energy exchanges in multiphase turbulence. For this purpose, we derive the Kármán–Howarth–Monin equation which accounts for the variations of density and viscosity across the two phases together with the effect of surface tension. We consider both conventional and phase conditional averaging operators. This framework is applied to numerical data from detailed simulations of forced homogeneous and isotropic turbulence covering different values for the liquid volume fraction, the liquid–gas density ratio, the Reynolds number and the Weber number. We confirm the existence of an additional transfer term due to surface tension. Part of the kinetic energy injected at large scales is transferred into kinetic energy at smaller scales by classical nonlinear transport while another part is transferred to surface energy before being released back into kinetic energy, but at smaller scales. The overall kinetic energy transfer rate is larger than in single-phase flows. Kinetic energy budgets conditioned in a given phase show that the scale-by-scale transport of turbulent kinetic energy due to pressure is a gain (loss) of kinetic energy for the lighter (heavier) phase. Its contribution can be dominant when the gas volume fraction becomes small or when the density ratio increases. Building on previous work, we hypothesise the existence of a pivotal scale above which kinetic energy is stored into surface deformation and below which the kinetic energy is released by interface restoration. Some phenomenological predictions for this scale are discussed.
Phenotypic plasticity refers to the capacity of an organism’s phenotype to vary in response to changes in environmental conditions, without any change in the individual genotype. Sea urchins (Echinoidea) are well-known for their morphological and behavioural plasticity in response to changing habitats or trophic environments. Phenotypic plasticity has been little studied in directly developing species, in which low levels of phenotypic plasticity are usually expected as a consequence of high levels of genetic differentiation among populations and local genetic adaptation. In the present work, we report a significant plasticity in the direct-developing and brooding sub-Antarctic species Ctenocidaris (Eurocidaris) nutrix (Echinoidea, Cidaridae) through morphological and trophic analyses of gut contents and δ13C and δ15N isotopic compositions. Molecular data (COI mtDNA) confirm that the different phenotypes of C. nutrix, the short-spined C. nutrix nutrix and the long-spined C. nutrix longispina, are a single species restricted to sub-Antarctic waters. As formerly demonstrated in broadcasting echinoid species, morphological plasticity appears to be mainly linked to depth and swell exposure, specimens from exposed and shallow sites showing shorter spines and larger apical systems compared to specimens from sheltered or deep sites. Significant differences in the diet and trophic niche of the different phenotypes suggest that prey type and food diversity may also be a factor promoting distinct phenotypic responses, both in the feeding behaviour and morphology of echinoids.
The linear Faraday instability of a viscous liquid film on a vibrating substrate is analysed. The importance is in the first step in applications for ultrasonic liquid-film destabilisation. The equations of motion are linearised and solved for a liquid film with constant thickness vibrating in a direction normal to its interface with an ambient gaseous medium treated as dynamically inert. Motivated by empirical evidence and the weakly nonlinear analysis of Miles (J. Fluid Mech., vol. 248, 1993, pp. 671–683), we choose an ansatz that the free liquid-film surface forms a square-wave pattern with the same wavenumbers in the two horizontal directions. The result of the stability analysis is a complex rate factor in the time dependency of the film surface deformation caused by the vibrations at a given excitation frequency and vibration amplitude. The analysis allows Hopf bifurcations in the liquid-film behaviour to be identified. Regimes of the deformation wavenumber and the vibration amplitude characterised by unstable film behaviour are found. Inside the regimes, states with given values of the deformation growth rate are identified. The influence of all the governing parameters, such as the vibration amplitude and frequency, the deformation wavenumber and the liquid material properties, on the liquid-film stability is quantified. Non-dimensional relations for vibration amplitudes characteristic for changing stability behaviour are presented.
Antiquities in the Middle East region face various threats, including illicit trade, theft, and forgery. This research examines a leather manuscript obtained by the Palestinian Tourist Police following the arrest of an antiquities smuggler. The manuscript contains Phoenician inscriptions along with symbols such as the Menorah, Shofar, and a plant branch. Radiocarbon dating using accelerator mass spectrometry (AMS) techniques determined the manuscript’s date to be post-1950 CE. Therefore, the results indicate that the manuscript is a modern forgery, likely created for commercial purposes. Additionally, the text contains several grammatical errors, further supporting the conclusion that it is not an authentic historical artifact.
The turbulent evolution of the shallow water system exhibits asymmetry in vorticity. This emergent phenomenon can be classified as ‘balanced’, that is, it is not due to the inertial-gravity-wave modes. The quasi-geostrophic (QG) system, the canonical model for balanced motion, has a symmetric evolution of vorticity, thus misses this phenomenon. Here, we present a next-order-in-Rossby extension of QG, $\textrm {QG}^{+1}$, in the shallow water context. We recapitulate the derivation of the model in one-layer shallow water grounded in physical principles and provide a new formulation using ‘potentials’. Then, the multi-layer extension of the shallow water quasi-geostrophic equation ($\textrm {SWQG}^{+1}$) model is formulated for the first time. The $\textrm {SWQG}^{+1}$ system is still balanced in the sense that there is only one prognostic variable, potential vorticity (PV), and all other variables are diagnosed from PV. It filters out inertial-gravity waves by design. This feature is attractive for modelling the dynamics of balanced motions that dominate transport in geophysical systems. The diagnostic relations connect ageostrophic physical variables and extend the massively useful geostrophic balance. Simulations of these systems in classical set-ups provide evidence that $\textrm {SWQG}^{+1}$ captures the vorticity asymmetry in the shallow water system. Simulations of freely decaying turbulence in one layer show that $\textrm {SWQG}^{+1}$ can capture the negatively skewed vorticity, and simulations of the nonlinear evolution of a baroclinically unstable jet show that it can capture vorticity asymmetry and finite divergence of strain-driven fronts.
Our group has previously characterised a post-violet infrared stimulated luminescence (pVIRSL) signal and developed a post-violet infrared single-aliquot regenerative-dose (pVIR-SAR) protocol for estimation of paleodoses. The protocol provides an opportunity for measuring polymineral samples as violet stimulation prior to IRSL measurement, bleaches natural luminescence signal of quartz, and makes it possible to probe photo-transferred charges in feldspar through IR stimulation. This study presents the results of the pVIR-SAR protocol on natural polymineral fine- (4–11 μm) and coarse-grain (90–150 μm) samples, including volcanic ash, pottery, and fluvial deposits from varied geological provenances. The results show that pVIR-SAR ages of both these fine- and coarse-grain samples are consistent with geological reasoning and available age controls thereby suggest that with the use of the pVIR-SAR protocol, mineral separation can be dispensed. This study also reports on the bleachability, athermal fading rates, and alpha efficiencies of pVIRSL for these samples and corresponding results are compared with IRSL at 50°C and post-IR IRSL (pIRIRSL) at 290°C. The pVIRSL signal has a better bleachability and reproducibility compared to the pIRIRSL signal. For the fluvial deposits dated in this study, the fine-grain samples provide ages consistent with the expected chronology.
This study presents a comparative analysis of the radiocarbon dates obtained on paired samples of various organic materials extracted from a lake sediment core. AMS radiocarbon dating of bulk sediment, chironomid capsules, and Trapa seeds was conducted to assess whether systematic offsets exist in the dates obtained on material that are commonly used to develop chronological frameworks for lake-based paleoenvironmental research. The findings reveal significant discrepancies between 14C dates obtained on bulk sediment, chironomid capsules, and on the Trapa seeds used to develop a previously published age-depth model for a sediment core recovered from Deoria Tal, Garhwal Himalaya, India. The systematic offset between the bulk sediment, and to a lesser extent chironomid remains, and the Trapa seeds is attributed to the integration of allochthonous carbon in the bulk sediment, leading to older apparent ages. The 3.6‰ shift in the δ13C value of the bulk sediment at 252 cm is inferred to reflect an increase in the contribution of C4 plant matter to the lake. The increase in enriched δ13C organic matter, coincident with the increasing offset between the dates obtained on bulk sediment and chironomids, and those obtained on the Trapa seeds, between 800 and 400 cal BP, was likely driven by anthropogenic land use changes, as evidenced by the four-fold increase in Cerealia-type pollen during this interval. This study underscores the necessity of selecting appropriate materials for radiocarbon dating to ensure accurate chronological reconstruction and highlights the potential of using chironomids remains to develop robust radiocarbon chronologies for lake sediment records.
Quantifying marine reservoir effects (MREs) across time and space is crucial for establishing accurate archaeological chronologies, including the activities of past hominines. Although the northern Iberian Peninsula shows a high density of Upper Paleolithic sites and marine shells are frequently found in these assemblages, quantification of MREs in this coastal region remains limited. We performed Bayesian modeling of radiocarbon measurements from both terrestrial (Capra pyrenaica, Cervus elaphus and other herbivores unidentified at species level) and marine (Littorina littorea Linnaeus, 1758 and Patella vulgata Linnaeus, 1758 taxa) archaeological samples recovered from the Tito Bustillo cave (Asturias, Spain) in order to determine the ΔR values for northern Iberia during the Lower Magdalenian period (ca. 20–17 ka cal BP). For the time span between 18.6 and 18.2 ka cal BP we estimated ΔR values of –298±44 14C yr and –495±122 14C yr for the periwinkle L. littorea and the common limpet P. vulgata, respectively. This finding has significant implications for future archaeological research in the northern Iberian Peninsula, as researchers must apply distinct ΔR values depending on the mollusk species selected for radiocarbon dating. Furthermore, the consistency between our calculated ΔR value for P. vulgata and previously recorded data for the same taxon from a neighboring coastal region (Cantabria, Spain) suggests remarkable stability in the marine environment of this area during the Lower Magdalenian period.
The interaction between cavitation bubbles and particles near rigid boundaries plays a crucial role in applications from surface cleaning to cavitation erosion. We present a combined experimental, numerical and theoretical investigation of how boundary layer flows affect particle motion during the growth and collapse of the cavitation bubble. Using laser-induced cavitation bubbles and particles of varying radius ratios and stand-off distances, we observe that increasing the bubble-to-particle size ratio suppresses particle displacement. Through one-way coupled simulations and theoretical modelling, we demonstrate that this suppression arises from a shift in the dominant forces acting on the particle: for small radius ratios, the pressure gradient force governs particle motion, while for large ratios, the interplay between added mass, lubrication, and pressure gradient forces becomes significant due to boundary layer growth in the bubble-induced stagnation flow. Based on a theoretical framework combining potential flow theory and axisymmetric viscous stagnation flow analysis, we identify the inviscid- and viscous-flow dominated regimes characterised by the combination of the stand-off distance, the bubble-to-particle radius ratio, and the bubble Reynolds number. Finally, we derive scaling laws for particle displacement consistent with experiments and simulations. These findings advance our understanding of unsteady boundary layer effects in cavitation bubble-particle interactions, offering new insights for applications in microparticle manipulation and flow measurements.
To address the scarcity of data on compacted snow shear damage under complex conditions, unconfined shear tests were conducted in Northeast China. This study examined apparent shear strength variations with density (300–550 kg·m−3), temperature (−17.4°C to 0°C) and strain rate (1.3 × 10−5–3.8 × 10−2 s−1), complemented by discrete element method simulations of particle rearrangement and crack extension. The key findings include the following. (1) The apparent shear strength first increases but then decreases with increasing strain rate, increasing by 56% during ductile failure and decreasing by 97% during brittle failure. The form of damage transitions from ductile to brittle as deformation and crack expansion occur, with a critical strain rate of ∼10−4 s−1. (2) An increase in compacted snow density significantly enhances shear capacity and inhibits crack propagation; a density increase of 200 kg·m−3 can reduce transverse and longitudinal snow cracks by 10–20%. (3) Snow temperature influences bond strength, thereby affecting both the strength value and the size of deformation cracks. Snow temperature exhibits a negative correlation with apparent shear strength. This study is significant for understanding alpine snow layer shear damage mechanisms and useful for compacted snow pavement design.
By deriving the Euler equations and Rankine–Hugoniot equations in the orthogonal frame field of the shock surface, the three-dimensional curved shock theory based on orthogonal frame of shock surface (3D-CST-boos) is established. In steady flow, this theory can be applied to three-dimensional (3-D) shocks without constraints on the incoming flow conditions. The derived equations elucidate the relationship between the first-order gradients of the preshock and postshock flow parameters and the geometric properties (curvature) of the 3-D curved shock. The correctness of 3D-CST-boos is verified for two-dimensional plane shocks and axisymmetric shocks. The analysis is then extended to the flow patterns of 3-D elliptical convex/concave shocks. Variations in the flow field behind a 3-D elliptical convex shock are explained based on different incoming flow conditions. Simultaneously, the fundamental mechanics underlying the differences between the flow fields of elliptical concave shocks and axisymmetric concave shocks are revealed using 3D-CST-boos. Finally, a concise analysis of the first-order flow parameters is presented for more complex 3-D shocks, including saddle-shaped shocks and cubic surface shocks.
Doubly diffusive convection describes the fluid motion driven by the competing buoyancy forces generated by temperature and salinity gradients. While the resulting convective motions usually occupy the entire domain, parameter regions exist where the convection is spatially localised. Although well studied in planar geometries, spatially localised doubly diffusive convection has never been investigated in a spherical shell, a geometry of relevance to astrophysics. In this paper, numerical simulation is used to compute spatially localised solutions of doubly diffusive convection in an axisymmetric spherical shell. Several families of spatially localised solutions, named using variants of the word convecton, are found and their bifurcation diagram computed. The various convectons are distinguished by their symmetry and by whether they are localised at the poles or at the equator. We find that, because the convection rolls that develop in the spherical shell are not straight but curve around the inner sphere, their strength varies with latitude, making the system prone to spatial modulation. As a consequence, spatially periodic states do not form from primary bifurcations and localised states are forced to arise via imperfect bifurcations. While the direct relevance of this work is to doubly diffusive convection, parallels drawn with the Swift–Hohenberg equation suggest a wide applicability to other pattern-forming systems in similar geometries.