To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Daisies are a special type of hypergraph introduced by Bollobás, Leader and Malvenuto. An $r$-daisy determined by a pair of disjoint sets $K$ and $M$ is the $(r+|K|)$-uniform hypergraph $\{K\cup P\,{:}\, P\in M^{(r)}\}$. Bollobás, Leader and Malvenuto initiated the study of Turán type density problems for daisies. This paper deals with Ramsey numbers of daisies, which are natural generalisations of classical Ramsey numbers. We discuss upper and lower bounds for the Ramsey number of $r$-daisies and also for special cases where the size of the kernel is bounded.
We study the community detection problem on a Gaussian mixture model, in which vertices are divided into $k\geq 2$ distinct communities. The major difference in our model is that the intensities for Gaussian perturbations are different for different entries in the observation matrix, and we do not assume that every community has the same number of vertices. We explicitly find the necessary and sufficient conditions for the exact recovery of the maximum likelihood estimation, which can give a sharp phase transition for the exact recovery even though the Gaussian perturbations are not identically distributed; see Section 7. Applications include the community detection on hypergraphs.
We address the problem of optimal transport with a quadratic cost functional and a constraint on the flux through a constriction along the path. The constriction, conceptually represented by a toll station, limits the flow rate across. We provide a precise formulation which, in addition, is amenable to generalization in higher dimensions. We work out in detail the case of transport in one dimension by proving existence and uniqueness of solution. Under suitable regularity assumptions, we give an explicit construction of the transport plan. Generalization of flux constraints to higher dimensions and possible extensions of the theory are discussed.
A $(k+r)$-uniform hypergraph $H$ on $(k+m)$ vertices is an $(r,m,k)$-daisy if there exists a partition of the vertices $V(H)=K\cup M$ with $|K|=k$, $|M|=m$ such that the set of edges of $H$ is all the $(k+r)$-tuples $K\cup P$, where $P$ is an $r$-tuple of $M$. We obtain an $(r-2)$-iterated exponential lower bound to the Ramsey number of an $(r,m,k)$-daisy for $2$-colours. This matches the order of magnitude of the best lower bounds for the Ramsey number of a complete $r$-graph.
We are interested in the two-dimensional four-constant Riemann problem to the isentropic compressible Euler equations. In terms of the self-similar variables, the governing system is of nonlinear mixed-type and the solution configuration typically contains transonic and small-scale structures. We construct a supersonic-sonic patch along a pseudo-streamline from the supersonic part to a sonic point. This kind of patch appears frequently in the two-dimensional Riemann problem and is a building block for constructing a global solution. To overcome the difficulty caused by the sonic degeneracy, we apply the characteristic decomposition technique to handle the problem in a partial hodograph plane. We establish a regular supersonic solution for the original problem by showing the global one-to-one property of the partial hodograph transformation. The uniform regularity of the solution and the regularity of an associated sonic curve are also discussed.
In a smoothly bounded domain $\Omega \subset \mathbb{R}^n$, $n\ge 1$, this manuscript considers the homogeneous Neumann boundary problem for the chemotaxis system
\begin{eqnarray*} \left \{ \begin{array}{l} u_t = \Delta u - \nabla \cdot (u\nabla v), \\[5pt] v_t = \Delta v + u - \alpha uv, \end{array} \right . \end{eqnarray*}
with parameter $\alpha \gt 0$ and with coincident production and uptake of attractants, as recently emphasized by Dallaston et al. as relevant for the understanding of T-cell dynamics.
It is shown that there exists $\delta _\star =\delta _\star (n)\gt 0$ such that for any given $\alpha \ge \frac{1}{\delta _\star }$ and for any suitably regular initial data satisfying $v(\cdot, 0)\le \delta _\star$, this problem admits a unique classical solution that stabilizes to the constant equilibrium $(\frac{1}{|\Omega |}\int _\Omega u(\cdot, 0), \, \frac{1}{\alpha })$ in the large time limit.
We investigate the list packing number of a graph, the least $k$ such that there are always $k$ disjoint proper list-colourings whenever we have lists all of size $k$ associated to the vertices. We are curious how the behaviour of the list packing number contrasts with that of the list chromatic number, particularly in the context of bounded degree graphs. The main question we pursue is whether every graph with maximum degree $\Delta$ has list packing number at most $\Delta +1$. Our results highlight the subtleties of list packing and the barriers to, for example, pursuing a Brooks’-type theorem for the list packing number.
The purpose of the paper is twofold. First, we show that partial-data transmission eigenfunctions associated with a conductive boundary condition vanish locally around a polyhedral or conic corner in $\mathbb{R}^n$, $n=2,3$. Second, we apply the spectral property to the geometrical inverse scattering problem of determining the shape as well as its boundary impedance parameter of a conductive scatterer, independent of its medium content, by a single far-field measurement. We establish several new unique recovery results. The results extend the relevant ones in [26] in two directions: first, we consider a more general geometric setup where both polyhedral and conic corners are investigated, whereas in [26] only polyhedral corners are concerned; second, we significantly relax the regularity assumptions in [26] which is particularly useful for the geometrical inverse problem mentioned above. We develop novel technical strategies to achieve these new results.
The structure of groups in which every element has prime power order (CP-groups) is extensively studied. We first investigate the properties of group $G$ such that each element of $G\setminus N$ has prime power order. It is proved that $N$ is solvable or every non-solvable chief factor $H/K$ of $G$ satisfying $H\leq N$ is isomorphic to $PSL_2(3^f)$ with $f$ a 2-power. This partially answers the question proposed by Lewis in 2023, asking whether $G\cong M_{10}$? Furthermore, we prove that if each element $x\in G\backslash N$ has prime power order and ${\bf C}_G(x)$ is maximal in $G$, then $N$ is solvable. Relying on this, we give the structure of group $G$ with normal subgroup $N$ such that ${\bf C}_G(x)$ is maximal in $G$ for any element $x\in G\setminus N$. Finally, we investigate the structure of a normal subgroup $N$ when the centralizer ${\bf C}_G(x)$ is maximal in $G$ for any element $x\in N\setminus {\bf Z}(N)$, which is a generalization of results of Zhao, Chen, and Guo in 2020, investigating a special case that $N=G$ for our main result. We also provide a new proof for Zhao, Chen, and Guo's results above.
We define duality triples and duality pairs in compactly generated triangulated categories and investigate their properties. This enables us to give an elementary way to determine whether a class is closed under pure subobjects, pure quotients and pure extensions, as well as providing a way to show the existence of approximations. One key ingredient is a new characterization of phantom maps. We then introduce an axiomatic form of Auslander–Gruson–Jensen duality, from which we define dual definable categories, and show that these coincide with symmetric coproduct closed duality pairs. This framework is ubiquitous, encompassing both algebraic triangulated categories and stable homotopy theories. Accordingly, we provide many applications in both settings, with a particular emphasis on silting theory and stratified tensor-triangulated categories.
For the special case $\eta =0$, fruitful results have been achieved since Tao and Winkler's work in 2011. However, there is no any progress for the general case $\eta >0$ in the past ten years. In this paper, we analysed some commonly used research methods when $\eta =0$, and found that these methods are completely unsuitable for situations where $\eta >0$. By introducing some new forms of functionals, we reconstruct the relationship between the haptotactic term and the nonlinear diffusion term, and ultimately prove the global existence of weak solutions. This result improves and perfects a series of works previously presented in the literature.
The Choquard equation is a partial differential equation that has gained significant interest and attention in recent decades. It is a nonlinear equation that combines elements of both the Laplace and Schrödinger operators, and it arises frequently in the study of numerous physical phenomena, from condensed matter physics to nonlinear optics.
In particular, the steady states of the Choquard equation were thoroughly investigated using a variational functional acting on the wave functions.
In this article, we introduce a dual formulation for the variational functional in terms of the potential induced by the wave function, and use it to explore the existence of steady states of a multi-state version the Choquard equation in critical and sub-critical cases.
Motivated by new examples of functional Banach spaces over the unit disk, arising as the symbol spaces in the study of random analytic functions, for which the monomials $\{z^n\}_{n\geq 0}$ exhibit features of an unconditional basis yet they often don’t even form a Schauder basis, we introduce a notion called solid basis for Banach spaces and p-Banach spaces and study its properties. Besides justifying the rich existence of solid bases, we study their relationship with unconditional bases, the weak-star convergence of Taylor polynomials, the problem of a solid span and the curious roles played by c0. The two features of this work are as follows: (1) during the process, we are led to revisit the axioms satisfied by a typical Banach space of analytic functions over the unit disk, leading to a notion of $\mathcal{X}^\mathrm{max}$ (and $\mathcal{X}^\mathrm{min}$), as well as a number of related functorial constructions, which are of independent interests; (2) the main interests of solid basis lie in the case of non-separable (p-)Banach spaces, such as BMOA and the Bloch space instead of VMOA and the little Bloch space.
We exhibit a new approach to the proofs of the existence of a large family of almost isometric ideals in nonseparable Banach spaces and existence of a large family of almost isometric local retracts in metric spaces. Our approach also implies the existence of a large family of nontrivial projections on every dual of a nonseparable Banach space. We prove three possible formulations of our results are equivalent. Some applications are mentioned which witness the usefulness of our novel approach.
Let $m,\,r\in {\mathbb {Z}}$ and $\omega \in {\mathbb {R}}$ satisfy $0\leqslant r\leqslant m$ and $\omega \geqslant 1$. Our main result is a generalized continued fraction for an expression involving the partial binomial sum $s_m(r) = \sum _{i=0}^r\binom{m}{i}$. We apply this to create new upper and lower bounds for $s_m(r)$ and thus for $g_{\omega,m}(r)=\omega ^{-r}s_m(r)$. We also bound an integer $r_0 \in \{0,\,1,\,\ldots,\,m\}$ such that $g_{\omega,m}(0)<\cdots < g_{\omega,m}(r_0-1)\leqslant g_{\omega,m}(r_0)$ and $g_{\omega,m}(r_0)>\cdots >g_{\omega,m}(m)$. For real $\omega \geqslant \sqrt 3$ we prove that $r_0\in \{\lfloor \frac {m+2}{\omega +1}\rfloor,\,\lfloor \frac {m+2}{\omega +1}\rfloor +1\}$, and also $r_0 =\lfloor \frac {m+2}{\omega +1}\rfloor$ for $\omega \in \{3,\,4,\,\ldots \}$ or $\omega =2$ and $3\nmid m$.