To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The celebrated Baire’s category theorem says that a complete space cannot be represented as a countable union of nowhere dense sets. This is a fundamental description of the structure of complete spaces. Because of this, it is fitting to derive the Banach–Steinhaus theorem as a consequence of Baire’s. This is what we do at the beginning of this chapter. We also show that the set of differentiable functions is quite small (i.e. meagre) in the space of continuous functions. As further consequences of Baire’s theorem we discuss two other fundamental results of functional analysis – the open mapping theorem and the closed graph theorem – together with some of their most immediate applications. In the meantime, we use the Banach–Steinhaus theorem to show that a Fourier series cannot converge uniformly for all continuous (and periodic) functions.
A normed linear space can be (uniquely) completed to a Banach space. However, whereas a Banach space is a match for its practically unique norm, there are many possible norms that can be used in a linear space, and depending on a choice of norm we obtain many different completions of a single space. This phenomenon is discussed first in the case of the space of sequences that have all but a finite number of coordinates equal to zero, and in the case of the space of polynomials. The injective and projective tensor norms, which show up naturally in the tensor product of two simple sequence spaces, illustrate this principle further, but they have their own importance, reaching far beyond the scope of the book.
In Cartan’s PhD thesis, there is a formula defining a certain rank 8 vector distribution in dimension 15, whose algebra of authomorphism is the split real form of the simple exceptional complex Lie algebra $\mathfrak {f}_4$. Cartan’s formula is written in the standard Cartesian coordinates in $\mathbb {R}^{15}$. In the present paper, we explain how to find analogous formulae for the flat models of any bracket generating distribution $\mathcal D$ whose symbol algebra $\mathfrak {n}({\mathcal D})$ is constant and 2-step graded, $\mathfrak {n}({\mathcal D})=\mathfrak {n}_{-2}\oplus \mathfrak {n}_{-1}$.
The formula is given in terms of a solution to a certain system of linear algebraic equations determined by two representations $(\rho ,\mathfrak {n}_{-1})$ and $(\tau ,\mathfrak {n}_{-2})$ of a Lie algebra $\mathfrak {n}_{00}$ contained in the $0$th order Tanaka prolongation $\mathfrak {n}_0$ of $\mathfrak {n}({\mathcal D})$.
Numerous examples are provided, with particular emphasis put on the distributions with symmetries being real forms of simple exceptional Lie algebras $\mathfrak {f}_4$ and $\mathfrak {e}_6$.
We study pencils of curves on a germ of complex reduced surface $(S,0)$. These are families of curves parametrized by $ \mathbb{P}^1 $ having 0 as the unique common point. We prove that for $w\in \mathbb{P}^1$, the corresponding curve of the pencil does not have the generic topology if and only if either the corresponding curve of the pulled-back pencil to the normalized surface has a non generic topology or w is a limit value for the function $ f/g $ along the singular locus of $(S,0)$, where f and g are generators of the pencil.
In this paper, we give necessary and sufficient conditions for the rigidity of the perimeter inequality under Schwarz symmetrization. The term rigidity refers to the situation in which the equality cases are only obtained by translations of the symmetric set. In particular, we prove that the sufficient conditions for rigidity provided in M. Barchiesi, F. Cagnetti and N. Fusco [Stability of the Steiner symmetrization of convex sets. J. Eur. Math. Soc. 15 (2013), 1245-1278.] are also necessary.
We give a simple method to estimate the number of distinct copies of some classes of spanning subgraphs in hypergraphs with a high minimum degree. In particular, for each $k\geq 2$ and $1\leq \ell \leq k-1$, we show that every $k$-graph on $n$ vertices with minimum codegree at least
contains $\exp\!(n\log n-\Theta (n))$ Hamilton $\ell$-cycles as long as $(k-\ell )\mid n$. When $(k-\ell )\mid k$, this gives a simple proof of a result of Glock, Gould, Joos, Kühn, and Osthus, while when $(k-\ell )\nmid k$, this gives a weaker count than that given by Ferber, Hardiman, and Mond, or when $\ell \lt k/2$, by Ferber, Krivelevich, and Sudakov, but one that holds for an asymptotically optimal minimum codegree bound.
For $\lambda \in (0,\,1/2]$ let $K_\lambda \subset \mathbb {R}$ be a self-similar set generated by the iterated function system $\{\lambda x,\, \lambda x+1-\lambda \}$. Given $x\in (0,\,1/2)$, let $\Lambda (x)$ be the set of $\lambda \in (0,\,1/2]$ such that $x\in K_\lambda$. In this paper we show that $\Lambda (x)$ is a topological Cantor set having zero Lebesgue measure and full Hausdorff dimension. Furthermore, we show that for any $y_1,\,\ldots,\, y_p\in (0,\,1/2)$ there exists a full Hausdorff dimensional set of $\lambda \in (0,\,1/2]$ such that $y_1,\,\ldots,\, y_p \in K_\lambda$.
All vital functions of living cells rely on the production of various functional molecules through gene expression. The production periods are burst-like and stochastic due to the discrete nature of biochemical reactions. In certain contexts, the concentrations of RNA or protein require regulation to maintain a fine internal balance within the cell. Here we consider a motif of two types of RNA molecules – mRNA and an antagonistic microRNA – which are encoded by a shared coding sequence and form a feed forward loop (FFL). This control mechanism is shown to be perfectly adapting in the deterministic context. We demonstrate that the adaptation (of the mean value) becomes imperfect if production occurs in random bursts. The FFL nevertheless outperforms the benchmark feedback loop in terms of counterbalancing variations in the signal. Methodologically, we adapt a hybrid stochastic model, which has widely been used to model a single regulatory molecule, to the current case of a motif involving two species; the use of the Laplace transform thereby circumvents the problem of moment closure that arises owing to the mRNA–microRNA interaction. We expect that the approach can be applicable to other systems with nonlinear kinetics.
A linear equation $E$ is said to be sparse if there is $c\gt 0$ so that every subset of $[n]$ of size $n^{1-c}$ contains a solution of $E$ in distinct integers. The problem of characterising the sparse equations, first raised by Ruzsa in the 90s, is one of the most important open problems in additive combinatorics. We say that $E$ in $k$ variables is abundant if every subset of $[n]$ of size $\varepsilon n$ contains at least $\text{poly}(\varepsilon )\cdot n^{k-1}$ solutions of $E$. It is clear that every abundant $E$ is sparse, and Girão, Hurley, Illingworth, and Michel asked if the converse implication also holds. In this note, we show that this is the case for every $E$ in four variables. We further discuss a generalisation of this problem which applies to all linear equations.
The aim of this paper is to prove a qualitative property, namely the preservation of positivity, for Schrödinger-type operators acting on $L^p$ functions defined on (possibly incomplete) Riemannian manifolds. A key assumption is a control of the behaviour of the potential of the operator near the Cauchy boundary of the manifolds. As a by-product, we establish the essential self-adjointness of such operators, as well as its generalization to the case $p\neq 2$, i.e. the fact that smooth compactly supported functions are an operator core for the Schrödinger operator in $L^p$.
We classify the automorphic Lie algebras of equivariant maps from a complex torus to $\mathfrak{sl}_2(\mathbb{C})$. For each case, we compute a basis in a normal form. The automorphic Lie algebras correspond precisely to two disjoint families of Lie algebras parametrised by the modular curve of $\mathrm{PSL}_2({\mathbb{Z}})$, apart from four cases, which are all isomorphic to Onsager’s algebra.
In this note, we examine the proportion of periodic orbits of Anosov flows that lie in an infinite zero density subset of the first homology group. We show that on a logarithmic scale we get convergence to a discrete fractal dimension.
Dans cet article, nous étudions la cohomologie de de Rham du premier revêtement de la tour de Drinfel’d. En particulier, nous obtenons une preuve purement locale du fait que la partie supercuspidale réalise la correspondance de Jacquet-Langlands locale pour $\mathrm {GL}_n$ en la comparant à la cohomologie rigide de certaines variétés de Deligne-Lusztig. Les représentations obtenues sont analogues à celles qui apparaissent dans la cohomologie $\ell $-adique lorsqu’on oublie l’action du groupe de Weil. La preuve repose sur une généralisation d’un résultat d’excision de Grosse-Klönne et de la description explicite du premier revêtement en tant que revêtement cyclique obtenu par l’auteur dans un travail précédent.
We establish two-term spectral asymptotics for the operator of linear elasticity with mixed boundary conditions on a smooth compact Riemannian manifold of arbitrary dimension. We illustrate our results by explicit examples in dimension two and three, thus verifying our general formulae both analytically and numerically.
In this paper, we investigate the twisted GGP conjecture for certain tempered representations using the theta correspondence and establish some special cases, namely when the L-parameter of the unitary group is the sum of conjugate-dual characters of the appropriate sign.