To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Reflexive homology is the homology theory associated to the reflexive crossed simplicial group; one of the fundamental crossed simplicial groups. It is the most general way to extend Hochschild homology to detect an order-reversing involution. In this paper we study the relationship between reflexive homology and the $C_2$-equivariant homology of free loop spaces. We define reflexive homology in terms of functor homology. We give a bicomplex for computing reflexive homology together with some calculations, including the reflexive homology of a tensor algebra. We prove that the reflexive homology of a group algebra is isomorphic to the homology of the $C_2$-equivariant Borel construction on the free loop space of the classifying space. We give a direct sum decomposition of the reflexive homology of a group algebra indexed by conjugacy classes of group elements, where the summands are defined in terms of a reflexive analogue of group homology. We define a hyperhomology version of reflexive homology and use it to study the $C_2$-equivariant homology of certain free loop and free loop-suspension spaces. We show that reflexive homology satisfies Morita invariance. We prove that under nice conditions the involutive Hochschild homology studied by Braun and by Fernàndez-València and Giansiracusa coincides with reflexive homology.
Smith theory says that the fixed point set of a semi-free action of a group $G$ on a contractible space is ${\mathbb {Z}}_p$-acyclic for any prime factor $p$ of the order of $G$. Jones proved the converse of Smith theory for the case $G$ is a cyclic group acting semi-freely on contractible, finite CW-complexes. We extend the theory to semi-free group actions on finite CW-complexes of given homotopy types, in various settings. In particular, the converse of Smith theory holds if and only if a certain $K$-theoretical obstruction vanishes. We also give some examples that show the geometrical effects of different types of $K$-theoretical obstructions.
We introduce a formula for translating any upper bound on the percolation threshold of a lattice $G$ into a lower bound on the exponential growth rate of lattice animals $a(G)$ and vice versa. We exploit this in both directions. We obtain the rigorous lower bound ${\dot{p}_c}({\mathbb{Z}}^3)\gt 0.2522$ for 3-dimensional site percolation. We also improve on the best known asymptotic bounds on $a({\mathbb{Z}}^d)$ as $d\to \infty$. Our formula remains valid if instead of lattice animals we enumerate certain subspecies called interfaces. Enumerating interfaces leads to functional duality formulas that are tightly connected to percolation and are not valid for lattice animals, as well as to strict inequalities for the percolation threshold.
Incidentally, we prove that the rate of the exponential decay of the cluster size distribution of Bernoulli percolation is a continuous function of $p\in (0,1)$.
In this note, we give a precise description of the limiting empirical spectral distribution for the non-backtracking matrices for an Erdős-Rényi graph $G(n,p)$ assuming $np/\log n$ tends to infinity. We show that derandomizing part of the non-backtracking random matrix simplifies the spectrum considerably, and then, we use Tao and Vu’s replacement principle and the Bauer-Fike theorem to show that the partly derandomized spectrum is, in fact, very close to the original spectrum.
For a finitely dominated Poincaré duality space $M$, we show how the first author's total obstruction $\mu _M$ to the existence of a Poincaré embedding of the diagonal map $M \to M \times M$ in [17] relates to the Reidemeister trace of the identity map of $M$. We then apply this relationship to show that $\mu _M$ vanishes when suitable conditions on the fundamental group of $M$ are satisfied.
Let $R$ be a strongly $\mathbb {Z}^2$-graded ring, and let $C$ be a bounded chain complex of finitely generated free $R$-modules. The complex $C$ is $R_{(0,0)}$-finitely dominated, or of type $FP$ over $R_{(0,0)}$, if it is chain homotopy equivalent to a bounded complex of finitely generated projective $R_{(0,0)}$-modules. We show that this happens if and only if $C$ becomes acyclic after taking tensor product with a certain eight rings of formal power series, the graded analogues of classical Novikov rings. This extends results of Ranicki, Quinn and the first author on Laurent polynomial rings in one and two indeterminates.
We compare two partitions of real bitangents to smooth plane quartics into sets of 4: one coming from the closures of connected components of the avoidance locus and another coming from tropical geometry. When both are defined, we use the Tarski principle for real closed fields in combination with the topology of real plane quartics and the tropical geometry of bitangents and theta characteristics to show that they coincide.
We investigate symmetry of the silting quiver of a given algebra which is induced by an anti-automorphism of the algebra. In particular, one shows that if there is a primitive idempotent fixed by the anti-automorphism, then the 2-silting quiver ($=$ the support $\tau$-tilting quiver) has a bisection. Consequently, in that case, we obtain that the cardinality of the 2-silting quiver is an even number (if it is finite).
A. Mark and J. Paupert [Presentations for cusped arithmetic hyperbolic lattices, 2018, arXiv:1709.06691.] presented a method to compute a presentation for any cusped complex hyperbolic lattice. In this note, we will use their method to give a presentation for the Eisenstein-Picard modular group in three complex dimensions.
In this work, we study the Humbert-Edge curves of type 5, defined as a complete intersection of four diagonal quadrics in ${\mathbb{P}}^5$. We characterize them using Kummer surfaces, and using the geometry of these surfaces, we construct some vanishing thetanulls on such curves. In addition, we describe an argument to give an isomorphism between the moduli space of Humbert-Edge curves of type 5 and the moduli space of hyperelliptic curves of genus 2, and we show how this argument can be generalized to state an isomorphism between the moduli space of hyperelliptic curves of genus $g=\frac{n-1}{2}$ and the moduli space of Humbert-Edge curves of type $n\geq 5$ where $n$ is an odd number.
A graph is called $k$-critical if its chromatic number is $k$ but every proper subgraph has chromatic number less than $k$. An old and important problem in graph theory asks to determine the maximum number of edges in an $n$-vertex $k$-critical graph. This is widely open for every integer $k\geq 4$. Using a structural characterisation of Greenwell and Lovász and an extremal result of Simonovits, Stiebitz proved in 1987 that for $k\geq 4$ and sufficiently large $n$, this maximum number is less than the number of edges in the $n$-vertex balanced complete $(k-2)$-partite graph. In this paper, we obtain the first improvement in the above result in the past 35 years. Our proofs combine arguments from extremal graph theory as well as some structural analysis. A key lemma we use indicates a partial structure in dense $k$-critical graphs, which may be of independent interest.
then $C_{\varphi }$ is in the Schatten $p$-class of the Hardy space $H^2$.
(2) There exists a holomorphic self-map $\varphi$ (which is, of course, not of bounded valence) such that the inequality (0.1) holds and $C_{\varphi }: H^2\to H^2$ does not belong to the Schatten $p$-class.
We provide a fairly self-contained account of the localisation and cofinality theorems for the algebraic $\operatorname K$-theory of stable $\infty$-categories. It is based on a general formula for the evaluation of an additive functor on a Verdier quotient closely following work of Waldhausen. We also include a new proof of the additivity theorem of $\operatorname K$-theory, strongly inspired by Ranicki's algebraic Thom construction, a short proof of the universality theorem of Blumberg, Gepner and Tabuada, and a second proof of the cofinality theorem which is based on the universal property of $\operatorname K$-theory.
In this paper we study a variation of the random $k$-SAT problem, called polarised random $k$-SAT, which contains both the classical random $k$-SAT model and the random version of monotone $k$-SAT another well-known NP-complete version of SAT. In this model there is a polarisation parameter $p$, and in half of the clauses each variable occurs negated with probability $p$ and pure otherwise, while in the other half the probabilities are interchanged. For $p=1/2$ we get the classical random $k$-SAT model, and at the other extreme we have the fully polarised model where $p=0$, or 1. Here there are only two types of clauses: clauses where all $k$ variables occur pure, and clauses where all $k$ variables occur negated. That is, for $p=0$, and $p=1$, we get an instance of random monotone$k$-SAT.
We show that the threshold of satisfiability does not decrease as $p$ moves away from $\frac{1}{2}$ and thus that the satisfiability threshold for polarised random $k$-SAT with $p\neq \frac{1}{2}$ is an upper bound on the threshold for random $k$-SAT. Hence the satisfiability threshold for random monotone $k$-SAT is at least as large as for random $k$-SAT, and we conjecture that asymptotically, for a fixed $k$, the two thresholds coincide.
In this article, we obtain transformation formulas analogous to the identity of Ramanujan, Hardy and Littlewood in the setting of primitive Maass cusp form over the congruence subgroup $\Gamma _0(N)$ and also provide an equivalent criterion of the grand Riemann hypothesis for the $L$-function associated with the primitive Maass cusp form over $\Gamma _0(N)$.
We propose an extension of the anisotropic interaction model which allows for collision avoidance in pairwise interactions by a rotation of forces (Totzeck (2020) Kinet. Relat. Models13(6), 1219–1242.) by including the agents’ body size. The influence of the body size on the self-organisation of the agents in channel and crossing scenarios as well as the fundamental diagram is studied. Since the model is stated as a coupled system of ordinary differential equations, we are able to give a rigorous well-posedness analysis. Then we state a parameter calibration problem that involves data from real experiments. We prove the existence of a minimiser and derive the corresponding first-order optimality conditions. With the help of these conditions, we propose a gradient descent algorithm based on mini-batches of the data set. We employ the proposed algorithm to fit the parameter of the collision avoidance and the strength parameters of the interaction forces to given real data from experiments. The results underpin the feasibility of the method.
Let $\mathcal {M}$ be an Ahlfors $n$-regular Riemannian manifold such that either the Ricci curvature is non-negative or the Ricci curvature is bounded from below together with a bound on the gradient of the heat kernel. In the paper [IMRN, 2022, no. 2, 1245-1269] of Brazke–Schikorra–Sire, the authors characterised the BMO function $u : \mathcal {M} \to \mathbb {R}$ by a Carleson measure condition of its $\sigma$-harmonic extension $U:\mathcal {M}\times \mathbb {R}_+ \to \mathbb {R}$. This paper is concerned with the similar problem under a more general Dirichlet metric measure space setting, and the limiting behaviours of BMO & Carleson measure, where the heat kernel admits only the so-called diagonal upper estimate. More significantly, without the Ricci curvature condition, we relax the Ahlfors regularity to a doubling property, and remove the pointwise bound on the gradient of the heat kernel. Some similar results for the Lipschitz function are also given, and two open problems related to our main result are considered.
Let K be an imaginary quadratic field and $p\geq 5$ a rational prime inert in K. For a $\mathbb {Q}$-curve E with complex multiplication by $\mathcal {O}_K$ and good reduction at p, K. Rubin introduced a p-adic L-function $\mathscr {L}_{E}$ which interpolates special values of L-functions of E twisted by anticyclotomic characters of K. In this paper, we prove a formula which links certain values of $\mathscr {L}_{E}$ outside its defining range of interpolation with rational points on E. Arithmetic consequences include p-converse to the Gross–Zagier and Kolyvagin theorem for E.
A key tool of the proof is the recent resolution of Rubin’s conjecture on the structure of local units in the anticyclotomic ${\mathbb {Z}}_p$-extension $\Psi _\infty $ of the unramified quadratic extension of ${\mathbb {Q}}_p$. Along the way, we present a theory of local points over $\Psi _\infty $ of the Lubin–Tate formal group of height $2$ for the uniformizing parameter $-p$.