To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study the behaviours of the commutators $[\vec b,\,T]$ generated by multilinear Calderón–Zygmund operators $T$ with $\vec b=(b_1,\,\ldots,\,b_m)\in L_{\rm loc}(\mathbb {R}^n)$ on weighted Hardy spaces. We show that for some $p_i\in (0,\,1]$ with $1/p=1/p_1+\cdots +1/p_m$, $\omega \in A_\infty$ and $b_i\in \mathcal {BMO}_{\omega,p_i}$ ($1\le i\le m$), which are a class of non-trivial subspaces of ${\rm BMO}$, the commutators $[\vec b,\,T]$ are bounded from $H^{p_1}(\omega )\times \cdots \times H^{p_m}(\omega )$ to $L^p(\omega )$. Meanwhile, we also establish the corresponding results for a class of maximal truncated multilinear commutators $T_{\vec b}^*$.
We consider the non-linear Schrödinger equation(Pμ)
\begin{equation*}\begin{array}{lc}-\Delta u + V(x) u = \mu f(u) + |u|^{2^*-2}u, &\end{array}\end{equation*}
in $\mathbb{R}^N$, $N\geq3$, where V changes sign and $f(s)/s$, s ≠ 0, is bounded, with V non-periodic in x. The existence of a solution is established employing spectral theory, a general linking theorem due to [12] and interaction between translated solutions of the problem at infinity with some qualitative properties of them.
The main purpose of this paper is to study weight-semi-greedy Markushevich bases, and in particular, find conditions under which such bases are weight-almost greedy. In this context, we prove that, for a large class of weights, the two notions are equivalent. We also show that all weight semi-greedy bases are truncation quasi-greedy and weight-superdemocratic. In all of the above cases, we also bring to the context of weights the weak greedy and Chebyshev greedy algorithms—which are frequently studied in the literature on greedy approximation. In the course of our work, a new property arises naturally and its relation with squeeze symmetric and bidemocratic bases is given. In addition, we study some parameters involving the weak thresholding and Chebyshevian greedy algorithms. Finally, we give examples of conditional bases with some of the weighted greedy-type conditions we study.
It is argued that a nonsingular elliptic curve admits a natural or fundamental abelian heap structure uniquely determined by the curve itself. It is shown that the set of complex analytic or rational functions from a nonsingular elliptic curve to itself is a truss arising from endomorphisms of this heap.
We show that the size-Ramsey number of the $\sqrt{n} \times \sqrt{n}$ grid graph is $O(n^{5/4})$, improving a previous bound of $n^{3/2 + o(1)}$ by Clemens, Miralaei, Reding, Schacht, and Taraz.
We show that all large enough positive integral surgeries on algebraic knots bound a 4-manifold with a negative definite plumbing tree, which we describe explicitly. Then we apply the lattice embedding obstruction coming from Donaldson’s Theorem to classify the ones of the form $S^3_n(T(p_1,k_1p_1+1; p_2, k_2p_2\pm 1))$ that also bound rational homology 4-balls.
The existence of isometric embedding of $S_q^m$ into $S_p^n$, where $1\leq p\neq q\leq \infty$ and $m,n\geq 2$, has been recently studied in [6]. In this article, we extend the study of isometric embeddability beyond the above-mentioned range of $p$ and $q$. More precisely, we show that there is no isometric embedding of the commutative quasi-Banach space $\ell _q^m(\mathbb {R})$ into $\ell _p^n(\mathbb {R})$, where $(q,p)\in (0,\infty )\times (0,1)$ and $p\neq q$. As non-commutative quasi-Banach spaces, we show that there is no isometric embedding of $S_q^m$ into $S_p^n$, where $(q,p)\in (0,2)\setminus \{1\}\times (0,1)$$\cup \, \{1\}\times (0,1)\setminus \left \{\!\frac {1}{n}:n\in \mathbb {N}\right \}$$\cup \, \{\infty \}\times (0,1)\setminus \left \{\!\frac {1}{n}:n\in \mathbb {N}\right \}$ and $p\neq q$. Moreover, in some restrictive cases, we also show that there is no isometric embedding of $S_q^m$ into $S_p^n$, where $(q,p)\in [2, \infty )\times (0,1)$. A new tool in our paper is the non-commutative Clarkson's inequality for Schatten class operators. Other tools involved are the Kato–Rellich theorem and multiple operator integrals in perturbation theory, followed by intricate computations involving power-series analysis.
We prove Lp norm convergence for (appropriate truncations of) the Fourier series arising from the Dirichlet Laplacian eigenfunctions on three types of triangular domains in $\mathbb{R}^2$: (i) the 45-90-45 triangle, (ii) the equilateral triangle and (iii) the hemiequilateral triangle (i.e. half an equilateral triangle cut along its height). The limitations of our argument to these three types are discussed in light of Lamé’s Theorem and the image method.
We study a family of finitely generated residually finite small-cancellation groups. These groups are quotients of $F_2$ depending on a subset $S$ of positive integers. Varying $S$ yields continuously many groups up to quasi-isometry.
Two-scale models pose a promising approach in simulating reactive flow and transport in evolving porous media. Classically, homogenised flow and transport equations are solved on the macroscopic scale, while effective parameters are obtained from auxiliary cell problems on possibly evolving reference geometries (micro-scale). Despite their perspective success in rendering lab/field-scale simulations computationally feasible, analytic results regarding the arising two-scale bilaterally coupled system often restrict to simplified models. In this paper, we first derive smooth dependence results concerning the partial coupling from the underlying geometry to macroscopic quantities. Therefore, alterations of the representative fluid domain are described by smooth paths of diffeomorphisms. Exploiting the gained regularity of the effective space- and time-dependent macroscopic coefficients, we present local-in-time existence results for strong solutions to the partially coupled micro–macro system using fixed-point arguments. What is more, we extend our results to the bilaterally coupled diffusive transport model including a level-set description of the evolving geometry.
A theorem of Brady and Meier states that a right-angled Artin group is a duality group if and only if the flag complex of the defining graph is Cohen–Macaulay. We use this to give an example of a RAAG with the property that its outer automorphism group is not a virtual duality group. This gives a partial answer to a question of Vogtmann. In an appendix, Brück describes how he used a computer-assisted search to find further examples.
Let G be a Baumslag–Solitar group. We calculate the intersection $\gamma_{\omega}(G)$ of all terms of the lower central series of G. Using this, we show that $[\gamma_{\omega}(G),G]=\gamma_{\omega}(G)$, thus answering a question of Bardakov and Neschadim [1]. For any $c \in \mathbb{N}$, with $c \geq 2$, we show, by using Lie algebra methods, that the quotient group $\gamma_{c}(G)/\gamma_{c+1}(G)$ of the lower central series of G is finite.