To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mathematical models of polyelectrolyte gels are often simplified by assuming the gel is electrically neutral. The rationale behind this assumption is that the thickness of the electric double layer (EDL) at the free surface of the gel is small compared to the size of the gel. Hence, the thin-EDL limit is taken, in which the thickness of the EDL is set to zero. Despite the widespread use of the thin-EDL limit, the solutions in the EDL are rarely computed and shown to match to the solutions for the electrically neutral bulk. The aims of this paper are to study the structure of the EDL and establish the validity of the thin-EDL limit. The model for the gel accounts for phase separation, which gives rise to diffuse interfaces with a thickness described by the Kuhn length. We show that the solutions in the EDL can only be asymptotically matched to the solutions for an electrically neutral bulk, in general, when the Debye length is much smaller than the Kuhn length. If the Debye length is similar to or larger than the Kuhn length, then phase separation can be initiated in the EDL. This phase separation spreads into the bulk of the gel and gives rise to electrically charged layers with different degrees of swelling. Thus, the thin-EDL limit and the assumption of electroneutrality only generally apply when the Debye length is much smaller than the Kuhn length.
In this paper, we study the hydrostatic approximation for the Navier-Stokes system in a thin domain. When we have convex initial data with Gevrey regularity of optimal index $\frac {3}{2}$ in the x variable and Sobolev regularity in the y variable, we justify the limit from the anisotropic Navier-Stokes system to the hydrostatic Navier-Stokes/Prandtl system. Due to our method in the paper being independent of $\varepsilon $, by the same argument, we also obtain the well-posedness of the hydrostatic Navier-Stokes/Prandtl system in the optimal Gevrey space. Our results improve upon the Gevrey index of $\frac {9}{8}$ found in [15, 35].
We study generalised quasirandom graphs whose vertex set consists of $q$ parts (of not necessarily the same sizes) with edges within each part and between each pair of parts distributed quasirandomly; such graphs correspond to the stochastic block model studied in statistics and network science. Lovász and Sós showed that the structure of such graphs is forced by homomorphism densities of graphs with at most $(10q)^q+q$ vertices; subsequently, Lovász refined the argument to show that graphs with $4(2q+3)^8$ vertices suffice. Our results imply that the structure of generalised quasirandom graphs with $q\ge 2$ parts is forced by homomorphism densities of graphs with at most $4q^2-q$ vertices, and, if vertices in distinct parts have distinct degrees, then $2q+1$ vertices suffice. The latter improves the bound of $8q-4$ due to Spencer.
In this paper, we consider a semi-classical version of the nonhomogeneous heat equation with singular time-dependent coefficients on the lattice $\hbar \mathbb {Z}^n$. We establish the well-posedness of such Cauchy problems in the classical sense when regular coefficients are considered, and analyse how the notion of very weak solution adapts in such equations when distributional coefficients are regarded. We prove the well-posedness of both the classical and the very weak solution in the weighted spaces $\ell ^{2}_{s}(\hbar \mathbb {Z}^n)$, $s \in \mathbb {R}$, which is enough to prove the well-posedness in the space of tempered distributions $\mathcal {S}'(\hbar \mathbb {Z}^n)$. Notably, when $s=0$, we show that for $\hbar \rightarrow 0$, the classical (resp. very weak) solution of the heat equation in the Euclidean setting $\mathbb {R}^n$ is recaptured by the classical (resp. very weak) solution of it in the semi-classical setting $\hbar \mathbb {Z}^n$.
where $\Omega =\mathbb {R}^N$ or $\mathbb {R}^N\setminus \Omega$ is a compact set, $\rho >0$, $V\ge 0$ (also $V\equiv 0$ is allowed), $p\in (2,2+\frac 4 N)$. The existence of a positive solution $\bar u$ is proved when $V$ verifies a suitable decay assumption (Dρ), or if $\|V\|_{L^q}$ is small, for some $q\ge \frac N2$ ($q>1$ if $N=2$). No smallness assumption on $V$ is required if the decay assumption (Dρ) is fulfilled. There are no assumptions on the size of $\mathbb {R}^N\setminus \Omega$. The solution $\bar u$ is a bound state and no ground state solution exists, up to the autonomous case $V\equiv 0$ and $\Omega =\mathbb {R}^N$.
In this work, we study an elliptic problem involving an operator of mixed order with both local and nonlocal aspects, and in either the presence or the absence of a singular nonlinearity. We investigate existence or nonexistence properties, power- and exponential-type Sobolev regularity results, and the boundary behaviour of the weak solution, in the light of the interplay between the summability of the datum and the power exponent in singular nonlinearities.
We establish some properties of $\tau$-exceptional sequences for finite-dimensional algebras. In an earlier paper, we established a bijection between the set of ordered support $\tau$-tilting modules and the set of complete signed $\tau$-exceptional sequences. We describe the action of the symmetric group on the latter induced by its natural action on the former. Similarly, we describe the effect on a $\tau$-exceptional sequence obtained by mutating the corresponding ordered support $\tau$-tilting module via a construction of Adachi-Iyama-Reiten.
We answer in a probabilistic setting two questions raised by Stokolos in a private communication. Precisely, given a sequence of random variables $\left\{X_k : k \geq 1\right\}$ uniformly distributed in $(0,1)$ and independent, we consider the following random sets of directions
\begin{equation*}\Omega_{\text{rand},\text{lin}} := \left\{ \frac{\pi X_k}{k}: k \geq 1\right\}\end{equation*}
We prove that almost surely the directional maximal operators associated to those sets of directions are not bounded on $L^p({\mathbb{R}}^2)$ for any $1 \lt p \lt \infty$.
Let X be a compact metric space, C(X) be the space of continuous real-valued functions on X and $A_{1},A_{2}$ be two closed subalgebras of C(X) containing constant functions. We consider the problem of approximation of a function $f\in C(X)$ by elements from $A_{1}+A_{2}$. We prove a Chebyshev-type alternation theorem for a function $u_{0} \in A_{1}+A_{2}$ to be a best approximation to f.
We study Cayley graphs of abelian groups from the perspective of quantum symmetries. We develop a general strategy for determining the quantum automorphism groups of such graphs. Applying this procedure, we find the quantum symmetries of the halved cube graph, the folded cube graph, and the Hamming graphs.
In this paper, we give necessary conditions for an $N$-expansive homeomorphism of a compact metric space to be nonchaotic in the Li–Yorke sense. As application we give a partial answer to a conjecture in [2].
The present paper deals with the kinetic-theoretic description of the evolution of systems consisting of many particles interacting not only with each other but also with the external world, so that the equation governing their evolution contains an additional term representing such interaction, called the ‘forcing term’. Firstly, the interactions between pairs of particles are both conservative and nonconservative; the latter represents, among others, birth/death rates. The ‘forcing term’ does not express a ‘classical’ force exerted by the external world on the particles, but a more general influence on the effects of mutual interactions of particles, for instance, climate changes, that increase or decrease the different agricultural productions at different times, thus altering the economic relationships between different subsystems, that in turn can be also perturbed by stock market fluctuations, sudden wars, periodic epidemics, and so on. Thus, the interest towards these problems moves the mathematical analysis of the effects of different kinds of forcing terms on solutions to equations governing the collective (that is statistical) behaviour of such nonconservative many-particle systems. In the present paper, we offer a study of the basic mathematical properties of such solutions, along with some numerical simulations to show the effects of forcing terms for a classical prey–predator model in ecology.
We study $L^p$-Sobolev regularity estimates for the restricted X-ray transforms generated by nondegenerate curves. Making use of the inductive strategy in the recent work by the authors, we establish the sharp $L^p$-regularity estimates for the restricted X-ray transforms in $\mathbb {R}^{d+1}$, $d\ge 3$. This extends the result due to Pramanik and Seeger in $\mathbb {R}^3$.
In this paper, we study existence of rotating periodic solutions for p-Laplacian differential systems. We first build a new continuation theorem by topological degree, and then obtain the existence of rotating periodic solutions for two kinds of p-Laplacian differential systems via this continuation theorem, extend some existing relevant results.
This paper mainly concerns the KAM persistence of the mapping $\mathscr {F}:\mathbb {T}^{n}\times E\rightarrow \mathbb {T}^{n}\times \mathbb {R}^{n}$ with intersection property, where $E\subset \mathbb {R}^{n}$ is a connected closed bounded domain with interior points. By assuming that the frequency mapping satisfies certain topological degree condition and weak convexity condition, we prove some Moser-type results about the invariant torus of mapping $\mathscr {F}$ with frequency-preserving under small perturbations. To our knowledge, this is the first approach to Moser's theorem with frequency-preserving. Moreover, given perturbed mappings over $\mathbb {T}^n$, it is shown that such persistence still holds when the frequency mapping and perturbations are only continuous about parameter beyond Lipschitz or even Hölder type. We also touch the parameter without dimension limitation problem under such settings.
Consider the following classes of pairs consisting of a group and a finite collection of subgroups:
•$ \mathcal{C}= \left \{ (G,\mathcal{H}) \mid \text{$\mathcal{H}$ is hyperbolically embedded in $G$} \right \}$
•$ \mathcal{D}= \left \{ (G,\mathcal{H}) \mid \text{the relative Dehn function of $(G,\mathcal{H})$ is well-defined} \right \} .$
Let $G$ be a group that splits as a finite graph of groups such that each vertex group $G_v$ is assigned a finite collection of subgroups $\mathcal{H}_v$, and each edge group $G_e$ is conjugate to a subgroup of some $H\in \mathcal{H}_v$ if $e$ is adjacent to $v$. Then there is a finite collection of subgroups $\mathcal{H}$ of $G$ such that
1. If each $(G_v, \mathcal{H}_v)$ is in $\mathcal C$, then $(G,\mathcal{H})$ is in $\mathcal C$.
2. If each $(G_v, \mathcal{H}_v)$ is in $\mathcal D$, then $(G,\mathcal{H})$ is in $\mathcal D$.
3. For any vertex $v$ and for any $g\in G_v$, the element $g$ is conjugate to an element in some $Q\in \mathcal{H}_v$ if and only if $g$ is conjugate to an element in some $H\in \mathcal{H}$.
That edge groups are not assumed to be finitely generated and that they do not necessarily belong to a peripheral collection of subgroups of an adjacent vertex are the main differences between this work and previous results in the literature. The method of proof provides lower and upper bounds of the relative Dehn functions in terms of the relative Dehn functions of the vertex groups. These bounds generalize and improve analogous results in the literature.
We compare two standard approaches to defining lower Ricci curvature bounds for Riemannian metrics of regularity below $C^2$. These are, on the one hand, the synthetic definition via weak displacement convexity of entropy functionals in the framework of optimal transport, and the distributional one based on non-negativity of the Ricci-tensor in the sense of Schwartz. It turns out that distributional bounds imply entropy bounds for metrics of class $C^1$ and that the converse holds for $C^{1,1}$-metrics under an additional convergence condition on regularizations of the metric.
We observe that, in the eta-periodic motivic stable homotopy category, odd rank vector bundles behave to some extent as if they had a nowhere vanishing section. We discuss some consequences concerning $\operatorname {\mathrm {SL}}^c$-orientations of motivic ring spectra and the étale classifying spaces of certain algebraic groups. In particular, we compute the classifying spaces of diagonalisable groups in the eta-periodic motivic stable homotopy category.