To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper the theory of periodic solutions of analytic Hamiltonian systems of differential equations, which is due to Cherry [5], is specialized to systems which have one symmetry property.
An analogue in a solid of the well known Pascal's theorem (Baker, [1], p. 219) for a conic is established by Baker ([2], pp. 53–54, Ex. 15) after Chasles [6] and by Salmon ([2], p. 142). The same is discussed in detail by Court [8]. The purpose of this paper is to extend it to a projective space of n dimensions or briefly to an n-space Sn. To prove it, we introduce here once again the idea of a set of n+1 associated lines in Sn as indicated in an earlier work (Mandan, [12]) in analogy with a set of 5 associated lines in S4 (Baker, [4], p. 122), and make use of the method of induction.
Although the harmonic series diverges, there is a sense in which it “nearly converges”. Let N denote the set of all positive integers, and S a subset of N. Then there are various sequences S for which converges, but for which the “omitted sequence” N–S is, in intuitive sense, sparse, compared with N. For example, Apostol [1] (page 384) quotes, without proof the case where S is the set of all Positive integers whose decimal representation does not invlove the digit zero (e.g. 7∈S but 101 ∉ S); then (1) converges, with T < 90.
Consider a Markov process defined in discrete time t = 1, 2, 3, hellip on a state space S. The state of the Process at time time t will be specifies by a random varable Vt, taking values in S. This paper presents some results concerning the behaviour of the saquence V1, V2, V3hellip, considered as a time series. In general, S will be assumed to be a Borel subset of an h-dimensional Euclideam space, where h is finite. The results apply, in particular, to a continuous state space, taking S to be an interval of the realine, or to discrete process having finitely or enumerably many states. Certain results, which are indicated in what follows, apply also to more general (infinite-dimensional) state spaces.
Let Ω be the set of the analytic functions F(z), regular in some neighbourhood of the origin with the expansion There may exist a function F(s, z) arndytic in s and satisfying the following conditions (s and s′ are any complex numbers): and the ƒ k(s) are polynomials in s.
Let K(y) be a known distribution function on (−∞, ∞) and let {Fn(y), n = 0, 1,…} be a sequence of unknown distribution functions related by subject to the initial condition If the sequence {Fn(y)} converges to a distribution function F(y) then F(y) satisfies the Wiener-Hopf equation
Let ω(x) be a non-decreasing function defined in the interval [a, b]. We extend the definition to all x by taking ω(x) = ω(a) for x < a and ω(x) = ω(b) for x > b. R. L. Jeffery [2] has denoted by the class of functions F(x) defined as follows:
In this paper we shall use the integral operator method of Bergman, B[1–6], to investigate solutions of the partial differential equation where s > −1. In particular, information concerning the growth, and location of singularities, of solutions of (1.1) will be obtained. Equations of the form (1.1) with s = 1, 2, arise from the (n+k+1)-dimensional Laplace equation Δn+k+1u = 0 in the “axially symmetric” coordinates x1, …xn, p where the relationship between cartesian and “axially symmetric” coordinates is given by
Let E be a given field and G some (not necessarily the total) group of automorphisms of E. We introduce a topology in G by saying that a net of elements Tα in G converges to T in G if for each x∈E, Tα(x) coincides with Tα(x) ultimately. We shall call this the Krull topology on G.
We prove that factor groups of cartesian powers of finite non-abelian simple groups cannot be countably infinite. Thisis not our main result, but it had been our original aim. The proof is based on a similar fact concerning σ-complete Boolean algebras, and on a representation of certain subcartesian powers of a group in its group ring over a Boolean ring. This representation, to which we give the name “Boolean power”, will be our central theme, and we begin with it.
The object of this note is to show that under suitable restrictions some results on the wreath product of groups can be carried over to topological groups. We prove in particular the following analogue of the well-known theorem of Krasner and Kaloujnine (see for example [2] Theorem 3.5): Theorem. Let A and B be two locally compact topological groups, and let (C, ε) be an extension of A by B. If there exists a continuous left inverseof ε, that is to say a continuous mapping τ: B → C such that re is the identity on B, then there exists a continuous monomorphism of C into the topological standard wreath product of A by B.
In 1927 Schreier [8] proved the Nielsen-Schreier Theorem that a subgroup H of a free group F is a free group by selecting a left transversal for H in F possessing a certain cancellation property. Hall and Rado [5] call a subset T of a free group F a Schreier system in F if it possesses this cancellation property, and consider the existence of a subgroup H of F such that a given Schreier system T is a left transversal for H in F.
Let ℒ V denote the algebra of all linear transformations on an n-dimensional vector space V over a field Φ. A subsemigroup S of the multiplicative semigroup of ℒ V will be said to be an affine semigroup over Φ if S is a linear variety, i.e., a translate of a linear subspace of ℒ V.
This concept in a somewhat different form was introduced and studied by Haskell Cohen and H. S. Collins [1]. In an appendix we give their definition and outline a method of describing possibly infinite dimensional affine semigroups in terms of algebras and supplemented algebras.