To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let A be a domain over an algebraically closed field with Gelfand–Kirillov dimension in the interval [2,3). We prove that if A has two locally nilpotent skew derivations satisfying some natural conditions, then A must be one of five algebras. All five algebras are Noetherian, finitely generated, and have Gelfand–Kirillov dimension equal to 2. We also obtain some results comparing the Gelfand–Kirillov dimension of an algebra to its subring of invariants under a locally nilpotent skew derivation.
Differential difference algebras, introduced by Mansfield and Szanto, arose naturally from differential difference equations. In this paper, we investigate the Gelfand–Kirillov dimension of differential difference algebras. We give a lower bound of the Gelfand–Kirillov dimension of a differential difference algebra and a sufficient condition under which the lower bound is reached; we also find an upper bound of this Gelfand–Kirillov dimension under some specific conditions and construct an example to show that this upper bound cannot be sharpened any further.
Let $R$ be a commutative ring. The regular digraph of ideals of $R$, denoted by $\Gamma (R)$, is a digraph whose vertex set is the set of all nontrivial ideals of $R$ and, for every two distinct vertices $I$ and $J$, there is an arc from $I$ to $J$ whenever $I$ contains a nonzero divisor on $J$. In this paper, we study the connectedness of $\Gamma (R)$. We also completely characterise the diameter of this graph and determine the number of edges in $\Gamma (R)$, whenever $R$ is a finite direct product of fields. Among other things, we prove that $R$ has a finite number of ideals if and only if $\mathrm {N}_{\Gamma (R)}(I)$ is finite, for all vertices $I$ in $\Gamma (R)$, where $\mathrm {N}_{\Gamma (R)}(I)$ is the set of all adjacent vertices to $I$ in $\Gamma (R)$.
We construct an interesting family of connected graded domains of Gel’fand–Kirillov dimension 4, and show that the general member of this family is noetherian. The algebras we construct are Koszul and have global dimension 4. They fail to be Artin–Schelter Gorenstein, however, showing that a theorem of Zhang and Stephenson for dimension 3 algebras does not extend to dimension 4. The Auslander–Buchsbaum formula also fails to hold for these algebras. The algebras we construct are birational to ℙ2, and their existence disproves a conjecture of the first author and Stafford. The algebras can be obtained as global sections of a certain quasicoherent graded sheaf on ℙ1×ℙ1, and our key technique is to work with this sheaf. In contrast to all previously known examples of birationally commutative graded domains, the graded pieces of the sheaf fail to be ample in the sense of Van den Bergh. Our results thus require significantly new techniques.
It is shown that over an arbitrary countable field there exists a finitely generated algebra that is nil, infinite dimensional and has Gelfand–Kirillov dimension at most 3.
Generalizing the concept of right bounded rings, a module MR is called bounded if annR(M/N)≤eRR for all N≤eMR. The module MR is called fully bounded if (M/P) is bounded as a module over R/annR(M/P) for any ℒ2-prime submodule P◃MR. Boundedness and right boundedness are Morita invariant properties. Rings with all modules (fully) bounded are characterized, and it is proved that a ring R is right Artinian if and only if RR has Krull dimension, all R-modules are fully bounded and ideals of R are finitely generated as right ideals. For certain fully bounded ℒ2-Noetherian modules MR, it is shown that the Krull dimension of MR is at most equal to the classical Krull dimension of R when both dimensions exist.
Let R be a ring, S a strictly ordered monoid, and ω:S→End(R) a monoid homomorphism. The skew generalized power series ring R[[S,ω]] is a common generalization of (skew) polynomial rings, (skew) power series rings, (skew) Laurent polynomial rings, (skew) group rings, and Mal’cev–Neumann Laurent series rings. We study the (S,ω)-Armendariz condition on R, a generalization of the standard Armendariz condition from polynomials to skew generalized power series. We resolve the structure of (S,ω)-Armendariz rings and obtain various necessary or sufficient conditions for a ring to be (S,ω)-Armendariz, unifying and generalizing a number of known Armendariz-like conditions in the aforementioned special cases. As particular cases of our general results we obtain several new theorems on the Armendariz condition; for example, left uniserial rings are Armendariz. We also characterize when a skew generalized power series ring is reduced or semicommutative, and we obtain partial characterizations for it to be reversible or 2-primal.
In this paper we find all finite rings with a nilpotent group of units. It was thought that the answer to this was already given by McDonald in 1974, but as was shown by Groza in 1989, the conclusions that had been reached there do not hold. Here, we improve some results of Groza and describe the structure of an arbitrary finite ring with a nilpotent group of units, thus solving McDonald’s problem.
A module M is said to satisfy the condition (℘*) if M is a direct sum of a projective module and a quasi-continuous module. In an earlier paper, we described the structure of rings over which every (countably generated) right module satisfies (℘*), and it was shown that such a ring is right artinian. In this note some additional properties of these rings are obtained. Among other results, we show that a ring over which all right modules satisfy (℘*) is also left artinian, but the property (℘*) is not left-right symmetric.
Results are formulated about the image and the kernel of the kth iterate fk of a function f : A → A. In this way, an extremely general version of Fitting's classical lemma is obtained. Two applications are presented: the first is a characterization of strongly π-regular rings, while the second is a “lattice theoretical Fitting lemma”.
This paper is a contiunation of the study of the rings for which every principal right ideal (respectively, every right ideal) is a direct summand of a right annihilator initiated by Stanley S. Page and the author in [20, 21].
For an infinite cardinal ℵ an associative ring R is quotient ℵ<-dimensional if the generalized Goldie dimension of all right quotient modules of RR are strictly less than ℵ. This latter quotient property of RR is characterized in terms of certain essential submodules of cyclic modules being generated by less than ℵ elements, and also in terms of weak injectivity and tightness properties of certain subdirect products of injective modules. The above is the higher cardinal analogue of the known theory in the finite ℵ = ℵ0 case.
We show that the growth function of a finitely generated linear semigroup S ⊆ Mn(K) is controlled by its behaviour on finitely many cancellative subsemigroups of S. If the growth of S is polynomially bounded, then every cancellative subsemigroup T of S has a group of fractions G ⊆ Mn (K) which is nilpotent-by-finite and of finite rank. We prove that the latter condition, strengthened by the hypothesis that every such G has a finite unipotent radical, is sufficient for S to have a polynomial growth. Moreover, the degree of growth of S is then bounded by a polynomial f(n, r) in n and the maximal degree r of growth of finitely generated cancellative T ⊆ S.
For a module M Over an Artin algebra R, we discuss the question of whether the Yoneda extension algebra Ext(M, M) is finitely generated as an algebra. We give an answer for bounded modules M. (These are modules whose syzygies have direct summands of bounded lengths.)
Let R be any ring with identity, M a unital right R-module and α ≥ 0 an ordinal. Then M is a direct sum of a semisimple module and a module having Krull dimension at most α if and only if for every submodule N of M there exists a direct summand K of M such that K ⊆ N and N/K has Krull dimension at most α.
Let I be an ideal of a Noetherian ring R. The purpose of this paper is to study the relationship between the vanishing of the local cohomology modules , and the comparison of the topologies defined by the I-adic {In}n≥0, the symbolic {I(n)}n≥0 and the integral filtration
Band sums of associative rings were introduced by Weissglass in 1973. The main theorem claims that the support of every Artinian band sum of rings is finite. This result is analogous to the well-known theorem on Artinian semigroup rings.
The main purposes of this paper are to investigate ℤ-injective rings with the representation extension property and its dual, to give a necessary and sufficient condition for a ℤ-injective ring to be an amalgamation base in the class of all rings and to determine structure of ℤ-injective Noetherian rings which are amalgamation bases. Further, in the class of all commutative rings, it is shown that a commutative ring has the representation extension property, if, and only if, it is an amalgamation base.
We prove that the relation type of all high powers of an ideal in a Noetherian ring is either one or two. It is one exactly when some power of the ideal is locally principal.