We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A module M is called a D4-module if, whenever A and B are submodules of M with M = A ⊕ B and f : A → B is a homomorphism with Imf a direct summand of B, then Kerf is a direct summand of A. The class of D4-modules contains the class of D3-modules, and hence the class of semi-projective modules, and so the class of Rickart modules. In this paper we prove that, over a commutative Dedekind domain R, for an R-module M which is a direct sum of cyclic submodules, M is direct projective (equivalently, it is semi-projective) iff M is D3 iff M is D4. Also we prove that, over a prime PI-ring, for a divisible R-module X, X is direct projective (equivalently, it is Rickart) iff X ⊕ X is D4. We determine some D3-modules and D4-modules over a discrete valuation ring, as well. We give some relevant examples. We also provide several examples on D3-modules and D4-modules via quivers.
We prove first-order definability of the prime subring inside polynomial rings, whose coefficient rings are (commutative unital) reduced and indecomposable. This is achieved by means of a uniform formula in the language of rings with signature $(0,1,+,\cdot )$. In the characteristic zero case, the claim implies that the full theory is undecidable, for rings of the referred type. This extends a series of results by Raphael Robinson, holding for certain polynomial integral domains, to a more general class.
Linckelmann and Murphy have classified the Morita equivalence classes of p-blocks of finite groups whose basic algebra has dimension at most
$12$
. We extend their classification to dimension
$13$
and
$14$
. As predicted by Donovan’s conjecture, we obtain only finitely many such Morita equivalence classes.
We study the moduli space of rank 2 instanton sheaves on ℙ3 in terms of representations of a quiver consisting of three vertices and four arrows between two pairs of vertices. Aiming at an alternative compactification for the moduli space of instanton sheaves, we show that for each rank 2 instanton sheaf, there is a stability parameter θ for which the corresponding quiver representation is θ-stable (in the sense of King), and that the space of stability parameters has a non-trivial wall-and-chamber decomposition. Looking more closely at instantons of low charge, we prove that there are stability parameters with respect to which every representation corresponding to a rank 2 instanton sheaf of charge 2 is stable and provide a complete description of the wall-and-chamber decomposition for representation corresponding to a rank 2 instanton sheaf of charge 1.
Skolem (1956) studied the germs at infinity of the smallest class of real valued functions on the positive real line containing the constant
$1$
, the identity function
${\mathbf {x}}$
, and such that whenever f and g are in the set,
$f+g,fg$
and
$f^g$
are in the set. This set of germs is well ordered and Skolem conjectured that its order type is epsilon-zero. Van den Dries and Levitz (1984) computed the order type of the fragment below
$2^{2^{\mathbf {x}}}$
. Here we prove that the set of asymptotic classes within any Archimedean class of Skolem functions has order type
$\omega $
. As a consequence we obtain, for each positive integer n, an upper bound for the fragment below
$2^{n^{\mathbf {x}}}$
. We deduce an epsilon-zero upper bound for the fragment below
$2^{{\mathbf {x}}^{\mathbf {x}}}$
, improving the previous epsilon-omega bound by Levitz (1978). A novel feature of our approach is the use of Conway’s surreal number for asymptotic calculations.
We construct quantum invariants of balanced sutured 3-manifolds with a
${\text {Spin}^c}$
structure out of an involutive (possibly nonunimodular) Hopf superalgebra H. If H is the Borel subalgebra of
${U_q(\mathfrak {gl}(1|1))}$
, we show that our invariant is computed via Fox calculus, and it is a normalization of Reidemeister torsion. The invariant is defined via a modification of a construction of Kuperberg, where we use the
${\text {Spin}^c}$
structure to take care of the nonunimodularity of H or
$H^{*}$
.
Given an action
${\varphi }$
of inverse semigroup S on a ring A (with domain of
${\varphi }(s)$
denoted by
$D_{s^*}$
), we show that if the ideals
$D_e$
, with e an idempotent, are unital, then the skew inverse semigroup ring
$A\rtimes S$
can be realized as the convolution algebra of an ample groupoid with coefficients in a sheaf of (unital) rings. Conversely, we show that the convolution algebra of an ample groupoid with coefficients in a sheaf of rings is isomorphic to a skew inverse semigroup ring of this sort. We recover known results in the literature for Steinberg algebras over a field as special cases.
Let
$\mathcal{C}$
be a fusion category over an algebraically closed field
$\mathbb{k}$
of arbitrary characteristic. Two numerical invariants of
$\mathcal{C}$
, that is, the Casimir number and the determinant of
$\mathcal{C}$
are considered in this paper. These two numbers are both positive integers and admit the property that the Grothendieck algebra
$(\mathcal{C})\otimes_{\mathbb{Z}}K$
over any field K is semisimple if and only if any of these numbers is not zero in K. This shows that these two numbers have the same prime factors. If moreover
$\mathcal{C}$
is pivotal, it gives a numerical criterion that
$\mathcal{C}$
is nondegenerate if and only if any of these numbers is not zero in
$\mathbb{k}$
. For the case that
$\mathcal{C}$
is a spherical fusion category over the field
$\mathbb{C}$
of complex numbers, these two numbers and the Frobenius–Schur exponent of
$\mathcal{C}$
share the same prime factors. This may be thought of as another version of the Cauchy theorem for spherical fusion categories.
Generalised quantum determinantal rings are the analogue in quantum matrices of Schubert varieties. Maximal orders are the noncommutative version of integrally closed rings. In this paper, we show that generalised quantum determinantal rings are maximal orders. The cornerstone of the proof is a description of generalised quantum determinantal rings, up to a localisation, as skew polynomial extensions.
The commutative differential graded algebra $A_{\mathrm {PL}}(X)$ of polynomial forms on a simplicial set $X$ is a crucial tool in rational homotopy theory. In this note, we construct an integral version $A^{\mathcal {I}}(X)$ of $A_{\mathrm {PL}}(X)$. Our approach uses diagrams of chain complexes indexed by the category of finite sets and injections $\mathcal {I}$ to model $E_{\infty }$ differential graded algebras (dga) by strictly commutative objects, called commutative $\mathcal {I}$-dgas. We define a functor $A^{\mathcal {I}}$ from simplicial sets to commutative $\mathcal {I}$-dgas and show that it is a commutative lift of the usual cochain algebra functor. In particular, it gives rise to a new construction of the $E_{\infty }$ dga of cochains. The functor $A^{\mathcal {I}}$ shares many properties of $A_{\mathrm {PL}}$, and can be viewed as a generalization of $A_{\mathrm {PL}}$ that works over arbitrary commutative ground rings. Working over the integers, a theorem by Mandell implies that $A^{\mathcal {I}}(X)$ determines the homotopy type of $X$ when $X$ is a nilpotent space of finite type.
We consider maximal non-l-intertwining collections, which are a higher-dimensional version of the maximal non-crossing collections which give clusters of Plücker coordinates in the Grassmannian coordinate ring, as described by Scott. We extend a method of Scott for producing such collections, which are related to tensor products of higher Auslander algebras of type A. We show that a higher preprojective algebra of the tensor product of two d-representation-finite algebras has a d-precluster-tilting subcategory. Finally, we relate mutations of these collections to a form of tilting for these algebras.
Let ${\mathcal{A}}$ be a semisimple Banach algebra with minimal left ideals and $\text{soc}({\mathcal{A}})$ be the socle of ${\mathcal{A}}$. We prove that if $\text{soc}({\mathcal{A}})$ is an essential ideal of ${\mathcal{A}}$, then every 2-local derivation on ${\mathcal{A}}$ is a derivation. As applications of this result, we can easily show that every 2-local derivation on some algebras, such as semisimple modular annihilator Banach algebras, strongly double triangle subspace lattice algebras and ${\mathcal{J}}$-subspace lattice algebras, is a derivation.
Bosonizations of quantum linear spaces are a large class of pointed Hopf algebras that include the Taft algebras and their generalizations. We give conditions for the smash product of an associative algebra with a bosonization of a quantum linear space to be (semi)prime. These are then used to determine (semi)primeness of certain smash products with quantum affine spaces. This extends Bergen’s work on Taft algebras.
We show that Ringrose's diagonal ideals are primitive ideals in a nest algebra (subject to the continuum hypothesis). This answers an old question of Lance and provides for the first time concrete descriptions of enough primitive ideals to obtain the Jacobson radical as their intersection. Separately, we provide a standard form for all left ideals of a nest algebra, which leads to insights into the maximal left ideals. In the case of atomic nest algebras, we show how primitive ideals can be categorized by their behaviour on the diagonal and provide concrete examples of all types.
Let K be a field of characteristic zero. In this paper, we study the polynomial identities of representations of Lie algebras, also called weak identities, or identities of pairs. These identities are determined by pairs of the form (A, L) where A is an associative enveloping algebra for the Lie algebra L. Then a weak identity of (A, L) (or an identity for the representation of L associated to A) is an associative polynomial which vanishes when evaluated on elements of L⊆ A. One of the most influential results in the area of PI algebras was the theory developed by Kemer. A crucial role in it was played by the construction of the Grassmann envelope of an associative algebra and the close relation of the identities of the algebra and its Grassmann envelope. Here we consider varieties of pairs. We prove that under some restrictions one can develop a theory similar to that of Kemer's in the study of identities of representations of Lie algebras. As a consequence, we establish that in the case when K is algebraically closed, if a variety of pairs does not contain pairs corresponding to representations of sl2(K), and if the variety is generated by a pair where the associative algebra is PI then it is soluble. As another consequence of the methods used to obtain the above result, and applying ideas from papers by Giambruno and Zaicev, we were able to construct a pair (A, L) such that its PI exponent (if it exists) cannot be an integer. We recall that the PI exponent exists and is an integer whenever A is an associative (a theorem by Giambruno and Zaicev), or a finite-dimensional Lie algebra (Zaicev). Gordienko also proved that the PI exponent exists and is an integer for finite-dimensional representations of Lie algebras.
In representation theory, commutative algebra and algebraic geometry, it is an important problem to understand when the triangulated category $\mathsf{D}_{\operatorname{sg}}^{\mathbb{Z}}(R)=\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ admits a tilting (respectively, silting) object for a $\mathbb{Z}$-graded commutative Gorenstein ring $R=\bigoplus _{i\geqslant 0}R_{i}$. Here $\mathsf{D}_{\operatorname{sg}}^{\mathbb{Z}}(R)$ is the singularity category, and $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ is the stable category of $\mathbb{Z}$-graded Cohen–Macaulay (CM) $R$-modules, which are locally free at all nonmaximal prime ideals of $R$.
In this paper, we give a complete answer to this problem in the case where $\dim R=1$ and $R_{0}$ is a field. We prove that $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ always admits a silting object, and that $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ admits a tilting object if and only if either $R$ is regular or the $a$-invariant of $R$ is nonnegative. Our silting/tilting object will be given explicitly. We also show that if $R$ is reduced and nonregular, then its $a$-invariant is nonnegative and the above tilting object gives a full strong exceptional collection in $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R=\text{}\underline{\mathsf{CM}}^{\mathbb{Z}}R$.
We study ring-theoretic (in)finiteness properties—such as Dedekind-finiteness and proper infiniteness—of ultraproducts (and more generally, reduced products) of Banach algebras.
While we characterise when an ultraproduct has these ring-theoretic properties in terms of its underlying sequence of algebras, we find that, contrary to the
$C^*$
-algebraic setting, it is not true in general that an ultraproduct has a ring-theoretic finiteness property if and only if “ultrafilter many” of the underlying sequence of algebras have the same property. This might appear to violate the continuous model theoretic counterpart of Łoś’s Theorem; the reason it does not is that for a general Banach algebra, the ring theoretic properties we consider cannot be verified by considering a bounded subset of the algebra of fixed bound. For Banach algebras, we construct counter-examples to show, for example, that each component Banach algebra can fail to be Dedekind-finite while the ultraproduct is Dedekind-finite, and we explain why such a counter-example is not possible for
$C^*$
-algebras. Finally, the related notion of having stable rank one is also studied for ultraproducts.
For a field K, let
$\mathcal {R}$
denote the Jacobson algebra
$K\langle X, Y \ | \ XY=1\rangle $
. We give an explicit construction of the injective envelope of each of the (infinitely many) simple left
$\mathcal {R}$
-modules. Consequently, we obtain an explicit description of a minimal injective cogenerator for
$\mathcal {R}$
. Our approach involves realizing
$\mathcal {R}$
up to isomorphism as the Leavitt path K-algebra of an appropriate graph
$\mathcal {T}$
, which thereby allows us to utilize important machinery developed for that class of algebras.
We give a necessary and sufficient condition for the existence of an enhancement of a finite triangulated category. Moreover, we show that enhancements are unique when they exist, up to Morita equivalence.