We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It was established by Boalch that Euler continuants arise as Lie group valued moment maps for a class of wild character varieties described as moduli spaces of points on
$\mathbb {P}^1$
by Sibuya. Furthermore, Boalch noticed that these varieties are multiplicative analogues of certain Nakajima quiver varieties originally introduced by Calabi, which are attached to the quiver
$\Gamma _n$
on two vertices and n equioriented arrows. In this article, we go a step further by unveiling that the Sibuya varieties can be understood using noncommutative quasi-Poisson geometry modelled on the quiver
$\Gamma _n$
. We prove that the Poisson structure carried by these varieties is induced, via the Kontsevich–Rosenberg principle, by an explicit Hamiltonian double quasi-Poisson algebra defined at the level of the quiver
$\Gamma _n$
such that its noncommutative multiplicative moment map is given in terms of Euler continuants. This result generalises the Hamiltonian double quasi-Poisson algebra associated with the quiver
$\Gamma _1$
by Van den Bergh. Moreover, using the method of fusion, we prove that the Hamiltonian double quasi-Poisson algebra attached to
$\Gamma _n$
admits a factorisation in terms of n copies of the algebra attached to
$\Gamma _1$
.
Let Q be a quiver of type
$\tilde {A}_n$
. Let
$\alpha =\alpha _1+\alpha _2+\cdots +\alpha _s$
be the canonical decomposition. For the polynomials
$M_Q(\alpha ,q)$
that count the number of isoclasses of representations of Q over
${\mathbb F}_q$
with dimension vector
$\alpha $
, we obtain a precise relation between the degree of
$M_Q(\alpha ,q)$
and that of
$\prod _{i=1}^{s} M_Q(\alpha _i,q)$
for an arbitrary dimension vector
$\alpha $
.
In this paper, we study the images of multilinear graded polynomials on the graded algebra of upper triangular matrices $UT_n$. For positive integers $q\leq n$, we classify these images on $UT_{n}$ endowed with a particular elementary ${\mathbb {Z}}_{q}$-grading. As a consequence, we obtain the images of multilinear graded polynomials on $UT_{n}$ with the natural ${\mathbb {Z}}_{n}$-grading. We apply this classification in order to give a new condition for a multilinear polynomial in terms of graded identities so that to obtain the traceless matrices in its image on the full matrix algebra. We also describe the images of multilinear polynomials on the graded algebras $UT_{2}$ and $UT_{3}$, for arbitrary gradings. We finish the paper by proving a similar result for the graded Jordan algebra $UJ_{2}$, and also for $UJ_{3}$ endowed with the natural elementary ${\mathbb {Z}}_{3}$-grading.
In this paper, we show that Leavitt path algebras of weighted graphs and Leavitt path algebras of separated graphs are intimately related. We prove that any Leavitt path algebra $L(E,\omega )$ of a row-finite vertex weighted graph $(E,\omega )$ is $*$-isomorphic to the lower Leavitt path algebra of a certain bipartite separated graph $(E(\omega ),C(\omega ))$. For a general locally finite weighted graph $(E, \omega )$, we show that a certain quotient $L_1(E,\omega )$ of $L(E,\omega )$ is $*$-isomorphic to an upper Leavitt path algebra of another bipartite separated graph $(E(w)_1,C(w)^1)$. We furthermore introduce the algebra ${L^{\mathrm {ab}}} (E,w)$, which is a universal tame $*$-algebra generated by a set of partial isometries. We draw some consequences of our results for the structure of ideals of $L(E,\omega )$, and we study in detail two different maximal ideals of the Leavitt algebra $L(m,n)$.
In this note, we correct an oversight regarding the modules from Definition 4.2 and proof of Lemma 5.12 in Baur et al. (Nayoga Math. J., 2020, 240, 322–354). In particular, we give a correct construction of an indecomposable rank
$2$
module
$\operatorname {\mathbb {L}}\nolimits (I,J)$
, with the rank 1 layers I and J tightly
$3$
-interlacing, and we give a correct proof of Lemma 5.12.
We prove that a Banach algebra B that is a completion of the universal enveloping algebra of a finite-dimensional complex Lie algebra
$\mathfrak {g}$
satisfies a polynomial identity if and only if the nilpotent radical
$\mathfrak {n}$
of
$\mathfrak {g}$
is associatively nilpotent in B. Furthermore, this holds if and only if a certain polynomial growth condition is satisfied on
$\mathfrak {n}$
.
We prove that a finite-dimensional algebra
$ \Lambda $
is
$ \tau $
-tilting finite if and only if all the bricks over
$ \Lambda $
are finitely generated. This is obtained as a consequence of the existence of proper locally maximal torsion classes for
$ \tau $
-tilting infinite algebras.
This paper gives a description of the full space of Bridgeland stability conditions on the bounded derived category of a contraction algebra associated to a
$3$
-fold flop. The main result is that the stability manifold is the universal cover of a naturally associated hyperplane arrangement, which is known to be simplicial and in special cases is an ADE root system. There are four main corollaries: (1) a short proof of the faithfulness of pure braid group actions in both algebraic and geometric settings, the first that avoid normal forms; (2) a classification of tilting complexes in the derived category of a contraction algebra; (3) contractibility of the stability space associated to the flop; and (4) a new proof of the
$K(\unicode{x3c0} \,,1)$
-theorem in various finite settings, which includes ADE braid groups.
We present a categorical point of view on dynamical quantum groups in terms of categories of Harish-Chandra bimodules. We prove Tannaka duality theorems for forgetful functors into the monoidal category of Harish-Chandra bimodules in terms of a slight modification of the notion of a bialgebroid. Moreover, we show that the standard dynamical quantum groups
$F(G)$
and
$F_q(G)$
are related to parabolic restriction functors for classical and quantum Harish-Chandra bimodules. Finally, we exhibit a natural Weyl symmetry of the parabolic restriction functor using Zhelobenko operators and show that it gives rise to the action of the dynamical Weyl group.
We prove that a ring R is an
$n \times n$
matrix ring (that is,
$R \cong \mathbb {M}_n(S)$
for some ring S) if and only if there exists a (von Neumann) regular element x in R such that
$l_R(x) = R{x^{n-1}}$
. As applications, we prove some new results, strengthen some known results and provide easier proofs of other results. For instance, we prove that if a ring R has elements x and y such that
$x^n = 0$
,
$Rx+Ry = R$
and
$Ry \cap l_{R}(x^{n-1}) = 0$
, then R is an
$n \times n$
matrix ring. This improves a result of Fuchs [‘A characterisation result for matrix rings’, Bull. Aust. Math. Soc.43 (1991), 265–267] where it is proved assuming further that the element y is nilpotent of index two and
$x+y$
is a unit. For an ideal I of a ring R, we prove that the ring
$(\begin {smallmatrix} R & I \\ R & R \end {smallmatrix})$
is a
$2 \times 2$
matrix ring if and only if
$R/I$
is so.
We show that the dimer algebra of a connected Postnikov diagram in the disc is bimodule internally
$3$
-Calabi–Yau in the sense of the author’s earlier work [43]. As a consequence, we obtain an additive categorification of the cluster algebra associated to the diagram, which (after inverting frozen variables) is isomorphic to the homogeneous coordinate ring of a positroid variety in the Grassmannian by a recent result of Galashin and Lam [18]. We show that our categorification can be realised as a full extension closed subcategory of Jensen–King–Su’s Grassmannian cluster category [28], in a way compatible with their bijection between rank
$1$
modules and Plücker coordinates.
We construct coloured lattice models whose partition functions represent symplectic and odd orthogonal Demazure characters and atoms. We show that our lattice models are not solvable, but we are able to show the existence of sufficiently many solutions of the Yang–Baxter equation that allow us to compute functional equations for the corresponding partition functions. From these functional equations, we determine that the partition function of our models are the Demazure atoms and characters for the symplectic and odd orthogonal Lie groups. We coin our lattice models as quasi-solvable. We use the natural bijection of admissible states in our models with Proctor patterns to give a right key algorithm for reverse King tableaux and Sundaram tableaux.
It is well known that the category of comodules over a flat Hopf algebroid is abelian but typically fails to have enough projectives, and more generally, the category of graded comodules over a graded flat Hopf algebroid is abelian but typically fails to have enough projectives. In this short paper, we prove that the category of connective graded comodules over a connective, graded, flat, finite-type Hopf algebroid has enough projectives. Applications to algebraic topology are given: the Hopf algebroids of stable co-operations in complex bordism, Brown–Peterson homology, and classical mod p homology all have the property that their categories of connective graded comodules have enough projectives. We also prove that categories of connective graded comodules over appropriate Hopf algebras fail to be equivalent to categories of graded connective modules over a ring.
We formulate a strengthening of the Zariski dense orbit conjecture for birational maps of dynamical degree one. So, given a quasiprojective variety X defined over an algebraically closed field K of characteristic
$0$
, endowed with a birational self-map
$\phi $
of dynamical degree
$1$
, we expect that either there exists a nonconstant rational function
$f:X\dashrightarrow \mathbb {P} ^1$
such that
$f\circ \phi =f$
, or there exists a proper subvariety
$Y\subset X$
with the property that, for any invariant proper subvariety
$Z\subset X$
, we have that
$Z\subseteq Y$
. We prove our conjecture for automorphisms
$\phi $
of dynamical degree
$1$
of semiabelian varieties X. Moreover, we prove a related result for regular dominant self-maps
$\phi $
of semiabelian varieties X: assuming that
$\phi $
does not preserve a nonconstant rational function, we have that the dynamical degree of
$\phi $
is larger than
$1$
if and only if the union of all
$\phi $
-invariant proper subvarieties of X is Zariski dense. We give applications of our results to representation-theoretic questions about twisted homogeneous coordinate rings associated with abelian varieties.
We present a framework for the computation of the Hopf 2-cocycles involved in the deformations of Nichols algebras over semisimple Hopf algebras. We write down a recurrence formula and investigate the extent of the connection with invariant Hochschild cohomology in terms of exponentials. As an example, we present detailed computations leading to the explicit description of the Hopf 2-cocycles involved in the deformations of a Nichols algebra of Cartan type
$A_2$
with
$q=-1$
, a.k.a. the positive part of the small quantum group
$\mathfrak{u}^+_{\sqrt{-\text{1}}}(\mathfrak{sl}_3)$
. We show that these cocycles are generically pure, that is they are not cohomologous to exponentials of Hochschild 2-cocycles.
We consider a quiver with potential (QP) $(Q(D),W(D))$ and an iced quiver with potential (IQP) $(\overline {Q}(D), F(D), \overline {W}(D))$ associated with a Postnikov Diagram D and prove that their mutations are compatible with the geometric exchanges of D. This ensures that we may define a QP $(Q,W)$ and an IQP $(\overline {Q},F,\overline {W})$ for a Grassmannian cluster algebra up to mutation equivalence. It shows that $(Q,W)$ is always rigid (thus nondegenerate) and Jacobi-finite. Moreover, in fact, we show that it is the unique nondegenerate (thus rigid) QP by using a general result of Geiß, Labardini-Fragoso, and Schröer (2016, Advances in Mathematics 290, 364–452).
Then we show that, within the mutation class of the QP for a Grassmannian cluster algebra, the quivers determine the potentials up to right equivalence. As an application, we verify that the auto-equivalence group of the generalized cluster category ${\mathcal {C}}_{(Q, W)}$ is isomorphic to the cluster automorphism group of the associated Grassmannian cluster algebra ${{\mathcal {A}}_Q}$ with trivial coefficients.
We complete the classification of the pointed Hopf algebras with finite Gelfand-Kirillov dimension that are liftings of the Jordan plane over a nilpotent-by-finite group, correcting the statement in [N. Andruskiewitsch, I. Angiono and I. Heckenberger, Liftings of Jordan and super Jordan planes, Proc. Edinb. Math. Soc., II. Ser. 61(3) (2018), 661–672.].
Given an algebra R and G a finite group of automorphisms of R, there is a natural map
$\eta _{R,G}:R\#G \to \mathrm {End}_{R^G} R$
, called the Auslander map. A theorem of Auslander shows that
$\eta _{R,G}$
is an isomorphism when
$R=\mathbb {C}[V]$
and G is a finite group acting linearly and without reflections on the finite-dimensional vector space V. The work of Mori–Ueyama and Bao–He–Zhang has encouraged the study of this theorem in the context of Artin–Schelter regular algebras. We initiate a study of Auslander’s result in the setting of nonconnected graded Calabi–Yau algebras. When R is a preprojective algebra of type A and G is a finite subgroup of
$D_n$
acting on R by automorphism, our main result shows that
$\eta _{R,G}$
is an isomorphism if and only if G does not contain all of the reflections through a vertex.
Given a negatively graded Calabi-Yau algebra, we regard it as a DG algebra with vanishing differentials and study its cluster category. We show that this DG algebra is sign-twisted Calabi-Yau and realise its cluster category as a triangulated hull of an orbit category of a derived category and as the singularity category of a finite-dimensional Iwanaga-Gorenstein algebra. Along the way, we give two results that stand on their own. First, we show that the derived category of coherent sheaves over a Calabi-Yau algebra has a natural cluster tilting subcategory whose dimension is determined by the Calabi-Yau dimension and the a-invariant of the algebra. Second, we prove that two DG orbit categories obtained from a DG endofunctor and its homotopy inverse are quasi-equivalent. As an application, we show that the higher cluster category of a higher representation infinite algebra is triangle equivalent to the singularity category of an Iwanaga-Gorenstein algebra, which is explicitly described. Also, we demonstrate that our results generalise the context of Keller–Murfet–Van den Bergh on the derived orbit category involving a square root of the AR translation.
Postnikov constructed a cellular decomposition of the totally nonnegative Grassmannians. The poset of cells can be described (in particular) via Grassmann necklaces. We study certain quiver Grassmannians for the cyclic quiver admitting a cellular decomposition, whose cells are naturally labeled by Grassmann necklaces. We show that the posets of cells coincide with the reversed cell posets of the cellular decomposition of the totally nonnegative Grassmannians. We investigate algebro-geometric and combinatorial properties of these quiver Grassmannians. In particular, we describe the irreducible components, study the action of the automorphism groups of the underlying representations, and describe the moment graphs. We also construct a resolution of singularities for each irreducible component; the resolutions are defined as quiver Grassmannians for an extended cyclic quiver.