We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In 2012, Andrews and Merca proved a truncated theorem on Euler's pentagonal number theorem. Motivated by the works of Andrews and Merca, Guo and Zeng deduced truncated versions for two other classical theta series identities of Gauss. Very recently, Xia et al. proved new truncated theorems of the three classical theta series identities by taking different truncated series than the ones chosen by Andrews–Merca and Guo–Zeng. In this paper, we provide a unified treatment to establish new truncated versions for the three identities of Euler and Gauss based on a Bailey pair due to Lovejoy. These new truncated identities imply the results proved by Andrews–Merca, Wang–Yee, and Xia–Yee–Zhao.
Let $p_t(a,b;n)$ denote the number of partitions of n such that the number of t-hooks is congruent to $a \bmod {b}$. For $t\in \{2, 3\}$, arithmetic progressions $r_1 \bmod {m_1}$ and $r_2 \bmod {m_2}$ on which $p_t(r_1,m_1; m_2 n + r_2)$ vanishes were established in recent work by Bringmann, Craig, Males and Ono [‘Distributions on partitions arising from Hilbert schemes and hook lengths’, Forum Math. Sigma10 (2022), Article no. e49] using the theory of modular forms. Here we offer a direct combinatorial proof of this result using abaci and the theory of t-cores and t-quotients.
We find an asymptotic enumeration formula for the number of simple $r$-uniform hypergraphs with a given degree sequence, when the number of edges is sufficiently large. The formula is given in terms of the solution of a system of equations. We give sufficient conditions on the degree sequence which guarantee existence of a solution to this system. Furthermore, we solve the system and give an explicit asymptotic formula when the degree sequence is close to regular. This allows us to establish several properties of the degree sequence of a random $r$-uniform hypergraph with a given number of edges. More specifically, we compare the degree sequence of a random $r$-uniform hypergraph with a given number edges to certain models involving sequences of binomial or hypergeometric random variables conditioned on their sum.
Recent works at the interface of algebraic combinatorics, algebraic geometry, number theory and topology have provided new integer-valued invariants on integer partitions. It is natural to consider the distribution of partitions when sorted by these invariants in congruence classes. We consider the prominent situations that arise from extensions of the Nekrasov–Okounkov hook product formula and from Betti numbers of various Hilbert schemes of n points on ${\mathbb {C}}^2$. For the Hilbert schemes, we prove that homology is equidistributed as $n\to \infty $. For t-hooks, we prove distributions that are often not equidistributed. The cases where $t\in \{2, 3\}$ stand out, as there are congruence classes where such counts are zero. To obtain these distributions, we obtain analytic results of independent interest. We determine the asymptotics, near roots of unity, of the ubiquitous infinite products
Let $\mathcal {C}_n =\left [\chi _{\lambda }(\mu )\right ]_{\lambda , \mu }$ be the character table for $S_n,$ where the indices $\lambda $ and $\mu $ run over the $p(n)$ many integer partitions of $n.$ In this note, we study $Z_{\ell }(n),$ the number of zero entries $\chi _{\lambda }(\mu )$ in $\mathcal {C}_n,$ where $\lambda $ is an $\ell $-core partition of $n.$ For every prime $\ell \geq 5,$ we prove an asymptotic formula of the form
where $\sigma _{\ell }(n)$ is a twisted Legendre symbol divisor function, $\delta _{\ell }:=(\ell ^2-1)/24,$ and $1/\alpha _{\ell }>0$ is a normalization of the Dirichlet L-value $L\left (\left ( \frac {\cdot }{\ell } \right ),\frac {\ell -1}{2}\right ).$ For primes $\ell $ and $n>\ell ^6/24,$ we show that $\chi _{\lambda }(\mu )=0$ whenever $\lambda $ and $\mu $ are both $\ell $-cores. Furthermore, if $Z^*_{\ell }(n)$ is the number of zero entries indexed by two $\ell $-cores, then, for $\ell \geq 5$, we obtain the asymptotic
Andrews [Generalized Frobenius Partitions, Memoirs of the American Mathematical Society, 301 (American Mathematical Society, Providence, RI, 1984)] defined two families of functions, $\phi _k(n)$ and $c\phi _k(n),$ enumerating two types of combinatorial objects which he called generalised Frobenius partitions. Andrews proved a number of Ramanujan-like congruences satisfied by specific functions within these two families. Numerous other authors proved similar results for these functions, often with a view towards a specific choice of the parameter $k.$ Our goal is to identify an infinite family of values of k such that $\phi _k(n)$ is even for all n in a specific arithmetic progression; in particular, we prove that, for all positive integers $\ell ,$ all primes $p\geq 5$ and all values $r, 0 < r < p,$ such that $24r+1$ is a quadratic nonresidue modulo $p,$
for all $n\geq 0.$ Our proof of this result is truly elementary, relying on a lemma from Andrews’ memoir, classical q-series results and elementary generating function manipulations. Such a result, which holds for infinitely many values of $k,$ is rare in the study of arithmetic properties satisfied by generalised Frobenius partitions, primarily because of the unwieldy nature of the generating functions in question.
By combining the generating function approach with the Lagrange expansion formula, we evaluate, in closed form, two multiple alternating sums of binomial coefficients, which can be regarded as alternating counterparts of the circular sum evaluation discovered by Carlitz [‘The characteristic polynomial of a certain matrix of binomial coefficients’, Fibonacci Quart.3(2) (1965), 81–89].
Let p be a prime with $p\equiv 1\pmod {4}$. Gauss first proved that $2$ is a quartic residue modulo p if and only if $p=x^2+64y^2$ for some $x,y\in \Bbb Z$ and various expressions for the quartic residue symbol $(\frac {2}{p})_4$ are known. We give a new characterisation via a permutation, the sign of which is determined by $(\frac {2}{p})_4$. The permutation is induced by the rule $x \mapsto y-x$ on the $(p-1)/4$ solutions $(x,y)$ to $x^2+y^2\equiv 0 \pmod {p}$ satisfying $1\leq x < y \leq (p-1)/2$.
We investigate random minimal factorizations of the n-cycle, that is, factorizations of the permutation $(1 \, 2 \cdots n)$ into a product of cycles $\tau_1, \ldots, \tau_k$ whose lengths $\ell(\tau_1), \ldots, \ell(\tau_k)$ satisfy the minimality condition $\sum_{i=1}^k(\ell(\tau_i)-1)=n-1$. By associating to a cycle of the factorization a black polygon inscribed in the unit disk, and reading the cycles one after another, we code a minimal factorization by a process of colored laminations of the disk. These new objects are compact subsets made of red noncrossing chords delimiting faces that are either black or white. Our main result is the convergence of this process as $n \rightarrow \infty$, when the factorization is randomly chosen according to Boltzmann weights in the domain of attraction of an $\alpha$-stable law, for some $\alpha \in (1,2]$. The limiting process interpolates between the unit circle and a colored version of Kortchemski’s $\alpha$-stable lamination. Our principal tool in the study of this process is a new bijection between minimal factorizations and a model of size-conditioned labeled random trees whose vertices are colored black or white, as well as the investigation of the asymptotic properties of these trees.
Let $\mathcal {O}(\pi )$ denote the number of odd parts in an integer partition $\pi$. In 2005, Stanley introduced a new statistic $\operatorname {srank}(\pi )=\mathcal {O}(\pi )-\mathcal {O}(\pi ')$, where $\pi '$ is the conjugate of $\pi$. Let $p(r,\,m;n)$ denote the number of partitions of $n$ with srank congruent to $r$ modulo $m$. Generating function identities, congruences and inequalities for $p(0,\,4;n)$ and $p(2,\,4;n)$ were then established by a number of mathematicians, including Stanley, Andrews, Swisher, Berkovich and Garvan. Motivated by these works, we deduce some generating functions and inequalities for $p(r,\,m;n)$ with $m=16$ and $24$. These results are refinements of some inequalities due to Swisher.
Combinatorial samplers are algorithmic schemes devised for the approximate- and exact-size generation of large random combinatorial structures, such as context-free words, various tree-like data structures, maps, tilings, RNA molecules. They can be adapted to combinatorial specifications with additional parameters, allowing for a more flexible control over the output profile of parametrised combinatorial patterns. One can control, for instance, the number of leaves, profile of node degrees in trees or the number of certain sub-patterns in generated strings. However, such a flexible control requires an additional and nontrivial tuning procedure. Using techniques of convex optimisation, we present an efficient tuning algorithm for multi-parametric combinatorial specifications. Our algorithm works in polynomial time in the system description length, the number of tuning parameters, the number of combinatorial classes in the specification, and the logarithm of the total target size. We demonstrate the effectiveness of our method on a series of practical examples, including rational, algebraic, and so-called Pólya specifications. We show how our method can be adapted to a broad range of less typical combinatorial constructions, including symmetric polynomials, labelled sets and cycles with cardinality lower bounds, simple increasing trees or substitutions. Finally, we discuss some practical aspects of our prototype tuner implementation and provide its benchmark results.
Let $p_{\{3, 3\}}(n)$ denote the number of $3$-regular partitions in three colours. Da Silva and Sellers [‘Arithmetic properties of 3-regular partitions in three colours’, Bull. Aust. Math. Soc.104(3) (2021), 415–423] conjectured four Ramanujan-like congruences modulo $5$ satisfied by $p_{\{3, 3\}}(n)$. We confirm these conjectural congruences using the theory of modular forms.
We study the number of ways of factoring elements in the complex reflection groups$G(r,s,n)$ as products of reflections. We prove a result that compares factorization numbers in$G(r,s,n)$ to those in the symmetric group$S_n$, and we use this comparison, along with the Ekedahl, Lando, Shapiro, and Vainshtein (ELSV) formula, to deduce a polynomial structure for factorizations in$G(r,s,n)$.
We interpret the degrees which arise in Tevelev’s study of scattering amplitudes in terms of moduli spaces of Hurwitz covers. Via excess intersection theory, the boundary geometry of the Hurwitz moduli space yields a simple recursion for the Tevelev degrees (together with their natural two parameter generalisation). We find exact solutions which specialise to Tevelev’s formula in his cases and connect to the projective geometry of lines and Castelnuovo’s classical count of $g^1_d$’s in other cases. For almost all values, the calculation of the two parameter generalisation of the Tevelev degree is new. A related count of refined Dyck paths is solved along the way.
A classical result for the simple symmetric random walk with 2n steps is that the number of steps above the origin, the time of the last visit to the origin, and the time of the maximum height all have exactly the same distribution and converge when scaled to the arcsine law. Motivated by applications in genomics, we study the distributions of these statistics for the non-Markovian random walk generated from the ascents and descents of a uniform random permutation and a Mallows(q) permutation and show that they have the same asymptotic distributions as for the simple random walk. We also give an unexpected conjecture, along with numerical evidence and a partial proof in special cases, for the result that the number of steps above the origin by step 2n for the uniform permutation generated walk has exactly the same discrete arcsine distribution as for the simple random walk, even though the other statistics for these walks have very different laws. We also give explicit error bounds to the limit theorems using Stein’s method for the arcsine distribution, as well as functional central limit theorems and a strong embedding of the Mallows(q) permutation which is of independent interest.
We prove and generalise a conjecture in [MPP4] about the asymptotics of $\frac{1}{\sqrt{n!}} f^{\lambda/\mu}$, where $f^{\lambda/\mu}$ is the number of standard Young tableaux of skew shape $\lambda/\mu$ which have stable limit shape under the $1/\sqrt{n}$ scaling. The proof is based on the variational principle on the partition function of certain weighted lozenge tilings.
A set S of permutations is forcing if for any sequence $\{\Pi_i\}_{i \in \mathbb{N}}$ of permutations where the density $d(\pi,\Pi_i)$ converges to $\frac{1}{|\pi|!}$ for every permutation $\pi \in S$, it holds that $\{\Pi_i\}_{i \in \mathbb{N}}$ is quasirandom. Graham asked whether there exists an integer k such that the set of all permutations of order k is forcing; this has been shown to be true for any $k\ge 4$. In particular, the set of all 24 permutations of order 4 is forcing. We provide the first non-trivial lower bound on the size of a forcing set of permutations: every forcing set of permutations (with arbitrary orders) contains at least four permutations.
For a Weyl group W of rank r, the W-Catalan number is the number of antichains of the poset of positive roots, and the W-Narayana numbers refine the W-Catalan number by keeping track of the cardinalities of these antichains. The W-Narayana numbers are symmetric – that is, the number of antichains of cardinality k is the same as the number of cardinality $r-k$. However, this symmetry is far from obvious. Panyushev posed the problem of defining an involution on root poset antichains that exhibits the symmetry of the W-Narayana numbers.
Rowmotion and rowvacuation are two related operators, defined as compositions of toggles, that give a dihedral action on the set of antichains of any ranked poset. Rowmotion acting on root posets has been the subject of a significant amount of research in the recent past. We prove that for the root posets of classical types, rowvacuation is Panyushev’s desired involution.
Let $p=3n+1$ be a prime with $n\in \mathbb {N}=\{0,1,2,\ldots \}$ and let $g\in \mathbb {Z}$ be a primitive root modulo p. Let $0<a_1<\cdots <a_n<p$ be all the cubic residues modulo p in the interval $(0,p)$. Then clearly the sequence $a_1 \bmod p,\, a_2 \bmod p,\ldots , a_n \bmod p$ is a permutation of the sequence $g^3 \bmod p,\,g^6 \bmod p,\ldots , g^{3n} \bmod p$. We determine the sign of this permutation.