To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $(S,\mathfrak{m})$ be an $n$-dimensional regular local ring essentially of finite type over a field and let $\mathfrak{a}$ be an ideal of $S$. We prove that if $\text{depth}\,S/\mathfrak{a}\geqslant 3$, then the cohomological dimension $\text{cd}(S,\mathfrak{a})$ of $\mathfrak{a}$ is less than or equal to $n-3$. This settles a conjecture of Varbaro for such an $S$. We also show, under the assumption that $S$ has an algebraically closed residue field of characteristic zero, that if $\text{depth}\,S/\mathfrak{a}\geqslant 4$, then $\text{cd}(S,\mathfrak{a})\leqslant n-4$ if and only if the local Picard group of the completion $\widehat{S/\mathfrak{a}}$ is torsion. We give a number of applications, including a vanishing result on Lyubeznik’s numbers, and sharp bounds on the cohomological dimension of ideals whose quotients satisfy good depth conditions such as Serre’s conditions $(S_{i})$.
Let $R$ be a commutative noetherian local ring. As an analog of the notion of the dimension of a triangulated category defined by Rouquier, the notion of the dimension of a subcategory of finitely generated $R$-modules is introduced in this paper. We found evidence that certain categories over nice singularities have small dimensions. When $R$ is Cohen–Macaulay, under a mild assumption it is proved that finiteness of the dimension of the full subcategory consisting of maximal Cohen–Macaulay modules which are locally free on the punctured spectrum is equivalent to saying that $R$ is an isolated singularity. As an application, the celebrated theorem of Auslander, Huneke, Leuschke, and Wiegand is not only recovered but also improved. The dimensions of stable categories of maximal Cohen–Macaulay modules as triangulated categories are also investigated in the case where $R$ is Gorenstein, and special cases of the recent results of Aihara and Takahashi, and Oppermann and Št́ovíček are recovered and improved. Our key technique involves a careful study of annihilators and supports of $\mathsf{Tor}$, $\mathsf{Ext}$, and $\underline{\mathsf{Hom}}$ between two subcategories.
We give a diagrammatic presentation for the category of Soergel bimodules for the dihedral group $W$. The (two-colored) Temperley–Lieb category is embedded inside this category as the degree $0$ morphisms between color-alternating objects. The indecomposable Soergel bimodules are the images of Jones–Wenzl projectors. When $W$ is infinite, the parameter $q$ of the Temperley–Lieb algebra may be generic, yielding a quantum version of the geometric Satake equivalence for $\mathfrak{sl}_{2}$. When $W$ is finite, $q$ must be specialized to an appropriate root of unity, and the negligible Jones–Wenzl projector yields the Soergel bimodule for the longest element of $W$.
Tensor products usually have nonzero torsion. This is a central theme of Auslander's 1961 paper; the theme continues in the work of Huneke and Wiegand in the 1990s. The main focus in this article is on tensor powers of a finitely generated module over a local ring. Also, we study torsion-free modules N with the property that M ⊗R N has nonzero torsion unless M is very special. An important example of such a module N is the Frobenius power peR over a complete intersection domain R of characteristic p > 0.
We address two aspects of finitely generated modules of finite projective dimension over local rings and their connection in between: embeddability and grade of order ideals of minimal generators of syzygies. We provide a solution of the embeddability problem and prove important reductions and special cases of the order ideal conjecture. In particular, we derive that, in any local ring R of mixed characteristic p > 0, where p is a nonzero divisor, if I is an ideal of finite projective dimension over R and p 𝜖 I or p is a nonzero divisor on R/I, then every minimal generator of I is a nonzero divisor. Hence, if P is a prime ideal of finite projective dimension in a local ring R, then every minimal generator of P is a nonzero divisor in R.
We prove that the coherent cohomology of a proper morphism of noetherian schemes can be made arbitrarily $p$-divisible by passage to proper covers (for a fixed prime $p$). Under some extra conditions, we also show that $p$-torsion can be killed by passage to proper covers. These results are motivated by the desire to understand rational singularities in mixed characteristic, and have applications in $p$-adic Hodge theory.
A companion basis for a quiver Γ mutation equivalent to a simply-laced Dynkin quiver is a subset of the associated root system which is a $\mathbb{Z}$-basis for the integral root lattice with the property that the non-zero inner products of pairs of its elements correspond to the edges in the underlying graph of Γ. It is known in type A (and conjectured for all simply-laced Dynkin cases) that any companion basis can be used to compute the dimension vectors of the finitely generated indecomposable modules over the associated cluster-tilted algebra. Here, we present a procedure for explicitly constructing a companion basis for any quiver of mutation type A or D.
The K-theoretical aspect of the commutative Bezout rings is established using the arithmetical properties of the Bezout rings in order to obtain a ring of all Smith normal forms of matrices over the Bezout ring. The internal structure and basic properties of such rings are discussed as well as their presentations by the Witt vectors. In a case of a commutative von Neumann regular rings the famous Grothendieck group K0(R) obtains the alternative description.
In this paper we consider the problem of explicitly finding canonical ideals of one-dimensional Cohen–Macaulay local rings. We show that Gorenstein ideals contained in a high power of the maximal ideal are canonical ideals. In the codimension 2 case, from a Hilbert–Burch resolution, we show how to construct canonical ideals of curve singularities. Finally, we translate the problem of the analytic classification of curve singularities to the classification of local Artin Gorenstein rings with suitable length.
Regularity, complete intersection and Gorenstein properties of a local ring can be characterized by homological conditions on the canonical homomorphism into its residue field. In positive characteristic, the Frobenius endomorphism (and, more generally, any contracting endomorphism) can also be used for these characterizations. We introduce here a class of local homomorphisms, in some sense larger than all above, for which these characterizations still hold, providing an unified treatment for this class of homomorphisms.
We develop a comprehensive theory of the stable representation categories of several sequences of groups, including the classical and symmetric groups, and their relation to the unstable categories. An important component of this theory is an array of equivalences between the stable representation category and various other categories, each of which has its own flavor (representation theoretic, combinatorial, commutative algebraic, or categorical) and offers a distinct perspective on the stable category. We use this theory to produce a host of specific results: for example, the construction of injective resolutions of simple objects, duality between the orthogonal and symplectic theories, and a canonical derived auto-equivalence of the general linear theory.
We give explicit formulas for the Hilbert series of residual intersections of a scheme in terms of the Hilbert series of its conormal modules. In a previous paper, we proved that such formulas should exist. We give applications to the number of equations defining projective varieties and to the dimension of secant varieties of surfaces and three-folds.
Let $R$ be a commutative ring. In this paper we study the behavior of Gorenstein homological dimensions of a homologically bounded $R$-complex under special base changes to the rings $R_{x}$ and $R/xR$, where $x$ is a regular element in $R$. Our main results refine some known formulae for the classical homological dimensions. In particular, we provide the Gorenstein counterpart of a criterion for projectivity of finitely generated modules, due to Vasconcelos.
The (usual) Caldero–Chapoton map is a map from the set of objects of a category to a Laurent polynomial ring over the integers. In the case of a cluster category, it maps reachable indecomposable objects to the corresponding cluster variables in a cluster algebra. This formalizes the idea that the cluster category is a categorification of the cluster algebra. The definition of the Caldero–Chapoton map requires the category to be 2-Calabi-Yau, and the map depends on a cluster-tilting object in the category. We study a modified version of the Caldero–Chapoton map which requires only that the category have a Serre functor and depends only on a rigid object in the category. It is well known that the usual Caldero–Chapoton map gives rise to so-called friezes, for instance, Conway–Coxeter friezes. We show that the modified Caldero–Chapoton map gives rise to what we call generalized friezes and that, for cluster categories of Dynkin type A, it recovers the generalized friezes introduced by combinatorial means in recent work by the authors and Bessenrodt.
In this article, we prove a strong version of the local Bertini theorem for normality on local rings in mixed characteristic. The main result asserts that a generic hyperplane section of a normal, Cohen–Macaulay, and complete local domain of dimension at least 3 is normal. Applications include the study of characteristic ideals attached to torsion modules over normal domains, which is fundamental in the study of Euler system theory, Iwasawa's main conjectures, and the deformation theory of Galois representations.
Consider a smooth quasi-projective variety $X$ equipped with a $\mathbb{C}^{\ast }$-action, and a regular function $f:X\rightarrow \mathbb{C}$ which is $\mathbb{C}^{\ast }$-equivariant with respect to a positive weight action on the base. We prove the purity of the mixed Hodge structure and the hard Lefschetz theorem on the cohomology of the vanishing cycle complex of $f$ on proper components of the critical locus of $f$, generalizing a result of Steenbrink for isolated quasi-homogeneous singularities. Building on work by Kontsevich and Soibelman, Nagao, and Efimov, we use this result to prove the quantum positivity conjecture for cluster mutations for all quivers admitting a positively graded nondegenerate potential. We deduce quantum positivity for all quivers of rank at most 4; quivers with nondegenerate potential admitting a cut; and quivers with potential associated to triangulations of surfaces with marked points and nonempty boundary.
Let K be a field of characteristic zero, and let R = K[X1,… ,Xn]. Let An(K) = K⟨X1,… ,Xn,∂1,… ,∂n⟩ be the nth Weyl algebra over K. We consider the case when R and An(K) are graded by giving deg Xi = ωi and deg ∂i = –ωi for i = 1,…,n (here ωi are positive integers). Set . Let I be a graded ideal in R. By a result due to Lyubeznik the local cohomology modules are holonomic (An(K))-modules for each i≥0. In this article we prove that the de Rham cohomology modules are concentrated in degree —ω; that is, for j ≠ –ω. As an application when A = R/(f) is an isolated singularity, we relate to Hn-1(∂(f);A), the (n – 1)th Koszul cohomology of A with respect to ∂1(f),…, ∂n(f).
We obtain a characterisation of the monomial ideals $I\subseteq \mathbb{C}[x_{1},\dots ,x_{n}]$ of finite colength that satisfy the condition $e(I)={\mathcal{L}}_{0}^{(1)}(I)\cdots {\mathcal{L}}_{0}^{(n)}(I)$, where ${\mathcal{L}}_{0}^{(1)}(I),\dots ,{\mathcal{L}}_{0}^{(n)}(I)$ is the sequence of mixed Łojasiewicz exponents of $I$ and $e(I)$ is the Samuel multiplicity of $I$. These are the monomial ideals whose integral closure admits a reduction generated by homogeneous polynomials.
The goal of this paper is to prove that if certain ‘standard’ conjectures on motives over algebraically closed fields hold, then over any ‘reasonable’ scheme $S$ there exists a motivic$t$-structure for the category $\text{DM}_{c}(S)$ of relative Voevodsky’s motives (to be more precise, for the Beilinson motives described by Cisinski and Deglise). If $S$ is of finite type over a field, then the heart of this $t$-structure (the category of mixed motivic sheaves over $S$) is endowed with a weight filtration with semisimple factors. We also prove a certain ‘motivic decomposition theorem’ (assuming the conjectures mentioned) and characterize semisimple motivic sheaves over $S$ in terms of those over its residue fields. Our main tool is the theory of weight structures. We actually prove somewhat more than the existence of a weight filtration for mixed motivic sheaves: we prove that the motivic $t$-structure is transversal to the Chow weight structure for $\text{DM}_{c}(S)$ (that was introduced previously by Hébert and the author). We also deduce several properties of mixed motivic sheaves from this fact. Our reasoning relies on the degeneration of Chow weight spectral sequences for ‘perverse étale homology’ (which we prove unconditionally); this statement also yields the existence of the Chow weight filtration for such (co)homology that is strictly restricted by (‘motivic’) morphisms.
Let R be a complete intersection ring, and let M and N be R-modules. It is shown that the vanishing of ExtiR(M, N) for a certain number of consecutive values of i starting at n forces the complete intersection dimension of M to be at most n–1. We also estimate the complete intersection dimension of M*, the dual of M, in terms of vanishing of cohomology modules, ExtiR(M,N).