To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The elasticity of an atomic integral domain is, in some sense, a measure of how far the domain is from being a half-factorial domain. We consider the relationship between the elasticity of a domain R and the elasticity of its polynomial ring R[x]. For example, if R has at least one atom, a sufficient condition for the polynomial ring R[x] to have elasticity 1 is that every non-constant irreducible polynomial f ∈ R[x] be irreducible in K[x]. We will determine the integral domains R whose polynomial rings satisfy this condition.
Let $R$ be a commutative Gorenstein ring. A result of Araya reduces the Auslander–Reiten conjecture on the vanishing of self-extensions to the case where $R$ has Krull dimension at most one. In this paper we extend Araya’s result to certain $R$-algebras. As a consequence of our argument, we obtain examples of bound quiver algebras that satisfy the Auslander–Reiten conjecture.
We apply the concept of braiding sequences to link polynomials to show polynomial growth bounds on the derivatives of the Jones polynomial evaluated on S1 and of the Brandt–Lickorish–Millett–Ho polynomial evaluated on [–2, 2] on alternating and positive knots of given genus. For positive links, boundedness criteria for the coefficients of the Jones, HOMFLY and Kauffman polynomials are derived. (This is a continuation of the paper ‘Applications of braiding sequences. I’: Commun. Contemp. Math.12(5) (2010), 681–726.)
The main aim of this paper is to classify Ulrich ideals and Ulrich modules over two-dimensional Gorenstein rational singularities (rational double points) from a geometric point of view. To achieve this purpose, we introduce the notion of (weakly) special Cohen–Macaulay modules with respect to ideals, and study the relationship between those modules and Ulrich modules with respect to good ideals.
We consider plane Cremona maps with proper base points and the base ideal generated by the linear system of forms defining the map. The object of this work is to study the link between the algebraic properties of the base ideal and those of the ideal of these points fattened by the virtual multiplicities arising from the linear system. We reveal conditions which naturally regulate this association, with particular emphasis on the homological side. While most classical numerical inequalities concern the three highest virtual multiplicities, here we emphasize also the role of one single highest multiplicity. In this vein we describe classes of Cremona maps for large and small values of the highest virtual multiplicity. We also deal with the delicate question as to when is the base ideal non-saturated and consider the structure of its saturation.
We prove that the Hilbert–Kunz multiplicity is upper semi-continuous in F-finite rings and algebras of essentially finite type over an excellent local ring.
Many results are known about test ideals and $F$-singularities for $\mathbb{Q}$-Gorenstein rings. In this paper, we generalize many of these results to the case when the symbolic Rees algebra ${\mathcal{O}}_{X}\oplus {\mathcal{O}}_{X}(-K_{X})\oplus {\mathcal{O}}_{X}(-2K_{X})\oplus \cdots \,$ is finitely generated (or more generally, in the log setting for $-K_{X}-\unicode[STIX]{x1D6E5}$). In particular, we show that the $F$-jumping numbers of $\unicode[STIX]{x1D70F}(X,\mathfrak{a}^{t})$ are discrete and rational. We show that test ideals $\unicode[STIX]{x1D70F}(X)$ can be described by alterations as in Blickle–Schwede–Tucker (and hence show that splinters are strongly $F$-regular in this setting – recovering a result of Singh). We demonstrate that multiplier ideals reduce to test ideals under reduction modulo $p$ when the symbolic Rees algebra is finitely generated. We prove that Hartshorne–Speiser–Lyubeznik–Gabber-type stabilization still holds. We also show that test ideals satisfy global generation properties in this setting.
Abstract Let G be a linear algebraic group over an algebraically closed field 𝕜 acting rationally on a G-module V with its null-cone. Let δ(G, V) and σ(G, V) denote the minimal number d such that for every and , respectively, there exists a homogeneous invariant f of positive degree at most d such that f(v) ≠ 0. Then δ(G) and σ(G) denote the supremum of these numbers taken over all G-modules V. For positive characteristics, we show that δ(G) = ∞ for any subgroup G of GL2(𝕜) that contains an infinite unipotent group, and σ(G) is finite if and only if G is finite. In characteristic zero, δ(G) = 1 for any group G, and we show that if σ(G) is finite, then G0 is unipotent. Our results also lead to a more elementary proof that βsep(G) is finite if and only if G is finite.
Let $(S,\mathfrak{m})$ be an $n$-dimensional regular local ring essentially of finite type over a field and let $\mathfrak{a}$ be an ideal of $S$. We prove that if $\text{depth}\,S/\mathfrak{a}\geqslant 3$, then the cohomological dimension $\text{cd}(S,\mathfrak{a})$ of $\mathfrak{a}$ is less than or equal to $n-3$. This settles a conjecture of Varbaro for such an $S$. We also show, under the assumption that $S$ has an algebraically closed residue field of characteristic zero, that if $\text{depth}\,S/\mathfrak{a}\geqslant 4$, then $\text{cd}(S,\mathfrak{a})\leqslant n-4$ if and only if the local Picard group of the completion $\widehat{S/\mathfrak{a}}$ is torsion. We give a number of applications, including a vanishing result on Lyubeznik’s numbers, and sharp bounds on the cohomological dimension of ideals whose quotients satisfy good depth conditions such as Serre’s conditions $(S_{i})$.
Let $R$ be a commutative noetherian local ring. As an analog of the notion of the dimension of a triangulated category defined by Rouquier, the notion of the dimension of a subcategory of finitely generated $R$-modules is introduced in this paper. We found evidence that certain categories over nice singularities have small dimensions. When $R$ is Cohen–Macaulay, under a mild assumption it is proved that finiteness of the dimension of the full subcategory consisting of maximal Cohen–Macaulay modules which are locally free on the punctured spectrum is equivalent to saying that $R$ is an isolated singularity. As an application, the celebrated theorem of Auslander, Huneke, Leuschke, and Wiegand is not only recovered but also improved. The dimensions of stable categories of maximal Cohen–Macaulay modules as triangulated categories are also investigated in the case where $R$ is Gorenstein, and special cases of the recent results of Aihara and Takahashi, and Oppermann and Št́ovíček are recovered and improved. Our key technique involves a careful study of annihilators and supports of $\mathsf{Tor}$, $\mathsf{Ext}$, and $\underline{\mathsf{Hom}}$ between two subcategories.
We give a diagrammatic presentation for the category of Soergel bimodules for the dihedral group $W$. The (two-colored) Temperley–Lieb category is embedded inside this category as the degree $0$ morphisms between color-alternating objects. The indecomposable Soergel bimodules are the images of Jones–Wenzl projectors. When $W$ is infinite, the parameter $q$ of the Temperley–Lieb algebra may be generic, yielding a quantum version of the geometric Satake equivalence for $\mathfrak{sl}_{2}$. When $W$ is finite, $q$ must be specialized to an appropriate root of unity, and the negligible Jones–Wenzl projector yields the Soergel bimodule for the longest element of $W$.
Tensor products usually have nonzero torsion. This is a central theme of Auslander's 1961 paper; the theme continues in the work of Huneke and Wiegand in the 1990s. The main focus in this article is on tensor powers of a finitely generated module over a local ring. Also, we study torsion-free modules N with the property that M ⊗R N has nonzero torsion unless M is very special. An important example of such a module N is the Frobenius power peR over a complete intersection domain R of characteristic p > 0.
We address two aspects of finitely generated modules of finite projective dimension over local rings and their connection in between: embeddability and grade of order ideals of minimal generators of syzygies. We provide a solution of the embeddability problem and prove important reductions and special cases of the order ideal conjecture. In particular, we derive that, in any local ring R of mixed characteristic p > 0, where p is a nonzero divisor, if I is an ideal of finite projective dimension over R and p 𝜖 I or p is a nonzero divisor on R/I, then every minimal generator of I is a nonzero divisor. Hence, if P is a prime ideal of finite projective dimension in a local ring R, then every minimal generator of P is a nonzero divisor in R.
We prove that the coherent cohomology of a proper morphism of noetherian schemes can be made arbitrarily $p$-divisible by passage to proper covers (for a fixed prime $p$). Under some extra conditions, we also show that $p$-torsion can be killed by passage to proper covers. These results are motivated by the desire to understand rational singularities in mixed characteristic, and have applications in $p$-adic Hodge theory.
A companion basis for a quiver Γ mutation equivalent to a simply-laced Dynkin quiver is a subset of the associated root system which is a $\mathbb{Z}$-basis for the integral root lattice with the property that the non-zero inner products of pairs of its elements correspond to the edges in the underlying graph of Γ. It is known in type A (and conjectured for all simply-laced Dynkin cases) that any companion basis can be used to compute the dimension vectors of the finitely generated indecomposable modules over the associated cluster-tilted algebra. Here, we present a procedure for explicitly constructing a companion basis for any quiver of mutation type A or D.
The K-theoretical aspect of the commutative Bezout rings is established using the arithmetical properties of the Bezout rings in order to obtain a ring of all Smith normal forms of matrices over the Bezout ring. The internal structure and basic properties of such rings are discussed as well as their presentations by the Witt vectors. In a case of a commutative von Neumann regular rings the famous Grothendieck group K0(R) obtains the alternative description.
In this paper we consider the problem of explicitly finding canonical ideals of one-dimensional Cohen–Macaulay local rings. We show that Gorenstein ideals contained in a high power of the maximal ideal are canonical ideals. In the codimension 2 case, from a Hilbert–Burch resolution, we show how to construct canonical ideals of curve singularities. Finally, we translate the problem of the analytic classification of curve singularities to the classification of local Artin Gorenstein rings with suitable length.
Regularity, complete intersection and Gorenstein properties of a local ring can be characterized by homological conditions on the canonical homomorphism into its residue field. In positive characteristic, the Frobenius endomorphism (and, more generally, any contracting endomorphism) can also be used for these characterizations. We introduce here a class of local homomorphisms, in some sense larger than all above, for which these characterizations still hold, providing an unified treatment for this class of homomorphisms.
We develop a comprehensive theory of the stable representation categories of several sequences of groups, including the classical and symmetric groups, and their relation to the unstable categories. An important component of this theory is an array of equivalences between the stable representation category and various other categories, each of which has its own flavor (representation theoretic, combinatorial, commutative algebraic, or categorical) and offers a distinct perspective on the stable category. We use this theory to produce a host of specific results: for example, the construction of injective resolutions of simple objects, duality between the orthogonal and symplectic theories, and a canonical derived auto-equivalence of the general linear theory.
We give explicit formulas for the Hilbert series of residual intersections of a scheme in terms of the Hilbert series of its conormal modules. In a previous paper, we proved that such formulas should exist. We give applications to the number of equations defining projective varieties and to the dimension of secant varieties of surfaces and three-folds.