To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that for any commutative Noetherian regular ring $R$ containing $\mathbb{Q}$, the map $K_{1}(R)\rightarrow K_{1}\left(\frac{R[x_{1},\ldots ,x_{4}]}{(x_{1}x_{2}-x_{3}x_{4})}\right)$ is an isomorphism. This answers a question of Gubeladze. We also compute the higher $K$-theory of this monoid algebra. In particular, we show that the above isomorphism does not extend to all higher $K$-groups. We give applications to a question of Lindel on the Serre dimension of monoid algebras.
Let $A$ be a complete local ring with a coefficient field $k$ of characteristic zero, and let $Y$ be its spectrum. The de Rham homology and cohomology of $Y$ have been defined by R. Hartshorne using a choice of surjection $R\rightarrow A$ where $R$ is a complete regular local $k$-algebra: the resulting objects are independent of the chosen surjection. We prove that the Hodge–de Rham spectral sequences abutting to the de Rham homology and cohomology of $Y$, beginning with their $E_{2}$-terms, are independent of the chosen surjection (up to a degree shift in the homology case) and consist of finite-dimensional $k$-spaces. These $E_{2}$-terms therefore provide invariants of $A$ analogous to the Lyubeznik numbers. As part of our proofs we develop a theory of Matlis duality in relation to ${\mathcal{D}}$-modules that is of independent interest. Some of the highlights of this theory are that if $R$ is a complete regular local ring containing $k$ and ${\mathcal{D}}={\mathcal{D}}(R,k)$ is the ring of $k$-linear differential operators on $R$, then the Matlis dual $D(M)$ of any left ${\mathcal{D}}$-module $M$ can again be given a structure of left ${\mathcal{D}}$-module, and if $M$ is a holonomic ${\mathcal{D}}$-module, then the de Rham cohomology spaces of $D(M)$ are $k$-dual to those of $M$.
In this paper we study the local cohomology modules of Du Bois singularities. Let $(R,\mathfrak{m})$ be a local ring; we prove that if $R_{\text{red}}$ is Du Bois, then $H_{\mathfrak{m}}^{i}(R)\rightarrow H_{\mathfrak{m}}^{i}(R_{\text{red}})$ is surjective for every $i$. We find many applications of this result. For example, we answer a question of Kovács and Schwede [Inversion of adjunction for rational and Du Bois pairs, Algebra Number Theory 10 (2016), 969–1000; MR 3531359] on the Cohen–Macaulay property of Du Bois singularities. We obtain results on the injectivity of $\operatorname{Ext}$ that provide substantial partial answers to questions in Eisenbud et al. [Cohomology on toric varieties and local cohomology with monomial supports, J. Symbolic Comput. 29 (2000), 583–600] in characteristic $0$. These results can also be viewed as generalizations of the Kodaira vanishing theorem for Cohen–Macaulay Du Bois varieties. We prove results on the set-theoretic Cohen–Macaulayness of the defining ideal of Du Bois singularities, which are characteristic-$0$ analogs and generalizations of results of Singh–Walther and answer some of their questions in Singh and Walther [On the arithmetic rank of certain Segre products, in Commutative algebra and algebraic geometry, Contemporary Mathematics, vol. 390 (American Mathematical Society, Providence, RI, 2005), 147–155]. We extend results on the relation between Koszul cohomology and local cohomology for $F$-injective and Du Bois singularities first shown in Hochster and Roberts [The purity of the Frobenius and local cohomology, Adv. Math. 21 (1976), 117–172; MR 0417172 (54 #5230)]. We also prove that singularities of dense $F$-injective type deform.
Conjectures are given for Hilbert series related to polynomial invariants of finite general linear groups: one for invariants mod Frobenius powers of the irrelevant ideal and one for cofixed spaces of polynomials.
Given a non-negative integer n and a complete hereditary cotorsion triple , the notion of subcategories in an abelian category is introduced. It is proved that a virtually Gorenstein ring R is n-Gorenstein if and only if the subcategory of Gorenstein injective R-modules is with respect to the cotorsion triple , where stands for the subcategory of Gorenstein projectives. In the case when a subcategory of is closed under direct summands such that each object in admits a right -approximation, a Bazzoni characterization is given for to be . Finally, an Auslander–Reiten correspondence is established between the class of subcategories and that of certain subcategories of which are -coresolving covariantly finite and closed under direct summands.
In this article the $p$-essential dimension of generic symbols over fields of characteristic $p$ is studied. In particular, the $p$-essential dimension of the length $\ell$ generic $p$-symbol of degree $n+1$ is bounded below by $n+\ell$ when the base field is algebraically closed of characteristic $p$. The proof uses new techniques for working with residues in Milne–Kato $p$-cohomology and builds on work of Babic and Chernousov in the Witt group in characteristic 2. Two corollaries on $p$-symbol algebras (i.e, degree 2 symbols) result from this work. The generic $p$-symbol algebra of length $\ell$ is shown to have $p$-essential dimension equal to $\ell +1$ as a $p$-torsion Brauer class. The second is a lower bound of $\ell +1$ on the $p$-essential dimension of the functor $\operatorname{Alg}_{p^{\ell },p}$. Roughly speaking this says that you will need at least $\ell +1$ independent parameters to be able to specify any given algebra of degree $p^{\ell }$ and exponent $p$ over a field of characteristic $p$ and improves on the previously established lower bound of 3.
We investigate images of higher-order differential operators of polynomial algebras over a field $k$. We show that, when $\operatorname{char}k>0$, the image of the set of differential operators $\{\unicode[STIX]{x1D709}_{i}-\unicode[STIX]{x1D70F}_{i}\mid i=1,2,\ldots ,n\}$ of the polynomial algebra $k[\unicode[STIX]{x1D709}_{1},\ldots ,\unicode[STIX]{x1D709}_{n},z_{1},\ldots ,z_{n}]$ is a Mathieu subspace, where $\unicode[STIX]{x1D70F}_{i}\in k[\unicode[STIX]{x2202}_{z_{1}},\ldots ,\unicode[STIX]{x2202}_{z_{n}}]$ for $i=1,2,\ldots ,n$. We also show that, when $\operatorname{char}k=0$, the same conclusion holds for $n=1$. The problem concerning images of differential operators arose from the study of the Jacobian conjecture.
Let $R$ be a finite commutative ring of odd characteristic and let $V$ be a free $R$-module of finite rank. We classify symmetric inner products defined on $V$ up to congruence and find the number of such symmetric inner products. Additionally, if $R$ is a finite local ring, the number of congruent symmetric inner products defined on $V$ in each congruence class is determined.
In this work, we introduce a new set of invariants associated to the linear strands of a minimal free resolution of a $\mathbb{Z}$-graded ideal $I\subseteq R=\Bbbk [x_{1},\ldots ,x_{n}]$. We also prove that these invariants satisfy some properties analogous to those of Lyubeznik numbers of local rings. In particular, they satisfy a consecutiveness property that we prove first for the Lyubeznik table. For the case of squarefree monomial ideals, we get more insight into the relation between Lyubeznik numbers and the linear strands of their associated Alexander dual ideals. Finally, we prove that Lyubeznik numbers of Stanley–Reisner rings are not only an algebraic invariant but also a topological invariant, meaning that they depend on the homeomorphic class of the geometric realization of the associated simplicial complex and the characteristic of the base field.
We study the multiple Eisenstein series introduced by Gangl, Kaneko and Zagier. We give a proof of (restricted) finite double shuffle relations for multiple Eisenstein series by revealing an explicit connection between the Fourier expansion of multiple Eisenstein series and the Goncharov co-product on Hopf algebras of iterated integrals.
Fock and Goncharov conjectured that the indecomposable universally positive (i.e. atomic) elements of a cluster algebra should form a basis for the algebra. This was shown to be false by Lee, Li and Zelevinsky. However, we find that the theta bases of Gross, Hacking, Keel and Kontsevich do satisfy this conjecture for a slightly modified definition of universal positivity in which one replaces the positive atlas consisting of the clusters by an enlargement we call the scattering atlas. In particular, this uniquely characterizes the theta functions.
A very well-covered graph is an unmixed graph whose covering number is half of the number of vertices. We construct an explicit minimal free resolution of the cover ideal of a Cohen–Macaulay very well-covered graph. Using this resolution, we characterize the projective dimension of the edge ideal of a very well-covered graph in terms of a pairwise $3$-disjoint set of complete bipartite subgraphs of the graph. We also show nondecreasing property of the projective dimension of symbolic powers of the edge ideal of a very well-covered graph with respect to the exponents.
We introduce the notion of functionally compact sets into the theory of nonlinear generalized functions in the sense of Colombeau. The motivation behind our construction is to transfer, as far as possible, properties enjoyed by standard smooth functions on compact sets into the framework of generalized functions. Based on this concept, we introduce spaces of compactly supported generalized smooth functions that are close analogues to the test function spaces of distribution theory. We then develop the topological and functional–analytic foundations of these spaces.
Let $\mathbb{K}$ be a field and S = ${\mathbb{K}}$[x1, . . ., xn] be the polynomial ring in n variables over the field $\mathbb{K}$. For every monomial ideal I ⊂ S, we provide a recursive formula to determine a lower bound for the Stanley depth of S/I. We use this formula to prove the inequality sdepth(S/I) ≥ size(I) for a particular class of monomial ideals.
We show that any Kawamata log terminal del Pezzo surface over an algebraically closed field of large characteristic is globally $F$-regular or it admits a log resolution which lifts to characteristic zero. As a consequence, we prove the Kawamata–Viehweg vanishing theorem for klt del Pezzo surfaces of large characteristic.
To a pair $P$ and $Q$ of finite posets we attach the toric ring $K[P,Q]$ whose generators are in bijection to the isotone maps from $P$ to $Q$. This class of algebras, called isotonian, are natural generalizations of the so-called Hibi rings. We determine the Krull dimension of these algebras and for particular classes of posets $P$ and $Q$ we show that $K[P,Q]$ is normal and that their defining ideal admits a quadratic Gröbner basis.
Let $S|_{R}$ be a groupoid Galois extension with Galois groupoid $G$ such that $E_{g}^{G_{r(g)}}\subseteq C1_{g}$, for all $g\in G$, where $C$ is the centre of $S$, $G_{r(g)}$ is the principal group associated to $r(g)$ and $\{E_{g}\}_{g\in G}$ are the ideals of $S$. We give a complete characterisation in terms of a partial isomorphism groupoid for such extensions, showing that $G=\dot{\bigcup }_{g\in G}\text{Isom}_{R}(E_{g^{-1}},E_{g})$ if and only if $E_{g}$ is a connected commutative algebra or $E_{g}=E_{g}^{G_{r(g)}}\oplus E_{g}^{G_{r(g)}}$, where $E_{g}^{G_{r(g)}}$ is connected, for all $g\in G$.
If $(G,V)$ is a polar representation with Cartan subspace $\mathfrak{c}$ and Weyl group $W$, it is shown that there is a natural morphism of Poisson schemes $\mathfrak{c}\oplus \mathfrak{c}^{\ast }/W\rightarrow V\oplus V^{\ast }/\!\!/\!\!/G$. This morphism is conjectured to be an isomorphism of the underlying reduced varieties if$(G,V)$ is visible. The conjecture is proved for visible stable locally free polar representations and some other examples.
Let (A, ${\mathfrak{m}$) be a Cohen–Macaulay local ring of dimension d and let I ⊆ J be two ${\mathfrak{m}$-primary ideals with I a reduction of J. For i = 0,. . .,d, let eiJ(A) (eiI(A)) be the ith Hilbert coefficient of J (I), respectively. We call the number ci(I, J) = eiJ(A) − eiI(A) the ith relative Hilbert coefficient of J with respect to I. If GI(A) is Cohen–Macaulay, then ci(I, J) satisfy various constraints. We also show that vanishing of some ci(I, J) has strong implications on depth GJn(A) for n ≫ 0.
Asymptotic triangulations can be viewed as limits of triangulations under the action of the mapping class group. In the case of the annulus, such triangulations have been introduced in K. Baur and G. Dupont (Compactifying exchange graphs: Annuli and tubes, Ann. Comb.3(18) (2014), 797–839). We construct an alternative method of obtaining these asymptotic triangulations using Coxeter transformations. This provides us with an algebraic and combinatorial framework for studying these limits via the associated quivers.