To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $(R,\mathfrak{m})$ be a Noetherian local ring of characteristic $p>0$. We introduce and study $F$-full and $F$-anti-nilpotent singularities, both are defined in terms of the Frobenius actions on the local cohomology modules of $R$ supported at the maximal ideal. We prove that if $R/(x)$ is $F$-full or $F$-anti-nilpotent for a nonzero divisor $x\in R$, then so is $R$. We use these results to obtain new cases on the deformation of $F$-injectivity.
Let $\unicode[STIX]{x1D709}$ be a stable Chern character on $\mathbb{P}^{1}\times \mathbb{P}^{1}$, and let $M(\unicode[STIX]{x1D709})$ be the moduli space of Gieseker semistable sheaves on $\mathbb{P}^{1}\times \mathbb{P}^{1}$ with Chern character $\unicode[STIX]{x1D709}$. In this paper, we provide an approach to computing the effective cone of $M(\unicode[STIX]{x1D709})$. We find Brill–Noether divisors spanning extremal rays of the effective cone using resolutions of the general elements of $M(\unicode[STIX]{x1D709})$ which are found using the machinery of exceptional bundles. We use this approach to provide many examples of extremal rays in these effective cones. In particular, we completely compute the effective cone of the first fifteen Hilbert schemes of points on $\mathbb{P}^{1}\times \mathbb{P}^{1}$.
The article concerns the existence and uniqueness of quantisations of cluster algebras. We prove that cluster algebras with an initial exchange matrix of full rank admit a quantisation in the sense of Berenstein-Zelevinsky and give an explicit generating set to construct all quantisations.
Let $U$ be a unipotent group which is graded in the sense that it has an extension $H$ by the multiplicative group of the complex numbers such that all the weights of the adjoint action on the Lie algebra of $U$ are strictly positive. We study embeddings of $H$ in a general linear group $G$ which possess Grosshans-like properties. More precisely, suppose $H$ acts on a projective variety $X$ and its action extends to an action of $G$ which is linear with respect to an ample line bundle on $X$. Then, provided that we are willing to twist the linearization of the action of $H$ by a suitable (rational) character of $H$, we find that the $H$-invariants form a finitely generated algebra and hence define a projective variety $X/\!/H$; moreover, the natural morphism from the semistable locus in $X$ to $X/\!/H$ is surjective, and semistable points in $X$ are identified in $X/\!/H$ if and only if the closures of their $H$-orbits meet in the semistable locus. A similar result applies when we replace $X$ by its product with the projective line; this gives us a projective completion of a geometric quotient of a $U$-invariant open subset of $X$ by the action of the unipotent group $U$.
This work generalises the short resolution given by Pisón Casares [‘The short resolution of a lattice ideal’, Proc. Amer. Math. Soc.131(4) (2003), 1081–1091] to any affine semigroup. We give a characterisation of Apéry sets which provides a simple way to compute Apéry sets of affine semigroups and Frobenius numbers of numerical semigroups. We also exhibit a new characterisation of the Cohen–Macaulay property for simplicial affine semigroups.
We develop a theory of unbounded derived categories of quasi-coherent sheaves on algebraic stacks. In particular, we show that these categories are compactly generated by perfect complexes for stacks that either have finite stabilizers or are local quotient stacks. We also extend Toën and Antieau–Gepner’s results on derived Azumaya algebras and compact generation of sheaves on linear categories from derived schemes to derived Deligne–Mumford stacks. These are all consequences of our main theorem: compact generation of a presheaf of triangulated categories on an algebraic stack is local for the quasi-finite flat topology.
Let $A\rightarrow B$ be a morphism of Artin local rings with the same embedding dimension. We prove that any $A$-flat $B$-module is $B$-flat. This freeness criterion was conjectured by de Smit in 1997 and improves Diamond’s criterion [The Taylor–Wiles construction and multiplicity one, Invent. Math. 128 (1997), 379–391, Theorem 2.1]. We also prove that if there is a nonzero $A$-flat $B$-module, then $A\rightarrow B$ is flat and is a relative complete intersection. Then we explain how this result allows one to simplify Wiles’s proof of Fermat’s last theorem: we do not need the so-called ‘Taylor–Wiles systems’ any more.
We show that for any commutative Noetherian regular ring $R$ containing $\mathbb{Q}$, the map $K_{1}(R)\rightarrow K_{1}\left(\frac{R[x_{1},\ldots ,x_{4}]}{(x_{1}x_{2}-x_{3}x_{4})}\right)$ is an isomorphism. This answers a question of Gubeladze. We also compute the higher $K$-theory of this monoid algebra. In particular, we show that the above isomorphism does not extend to all higher $K$-groups. We give applications to a question of Lindel on the Serre dimension of monoid algebras.
Let $A$ be a complete local ring with a coefficient field $k$ of characteristic zero, and let $Y$ be its spectrum. The de Rham homology and cohomology of $Y$ have been defined by R. Hartshorne using a choice of surjection $R\rightarrow A$ where $R$ is a complete regular local $k$-algebra: the resulting objects are independent of the chosen surjection. We prove that the Hodge–de Rham spectral sequences abutting to the de Rham homology and cohomology of $Y$, beginning with their $E_{2}$-terms, are independent of the chosen surjection (up to a degree shift in the homology case) and consist of finite-dimensional $k$-spaces. These $E_{2}$-terms therefore provide invariants of $A$ analogous to the Lyubeznik numbers. As part of our proofs we develop a theory of Matlis duality in relation to ${\mathcal{D}}$-modules that is of independent interest. Some of the highlights of this theory are that if $R$ is a complete regular local ring containing $k$ and ${\mathcal{D}}={\mathcal{D}}(R,k)$ is the ring of $k$-linear differential operators on $R$, then the Matlis dual $D(M)$ of any left ${\mathcal{D}}$-module $M$ can again be given a structure of left ${\mathcal{D}}$-module, and if $M$ is a holonomic ${\mathcal{D}}$-module, then the de Rham cohomology spaces of $D(M)$ are $k$-dual to those of $M$.
In this paper we study the local cohomology modules of Du Bois singularities. Let $(R,\mathfrak{m})$ be a local ring; we prove that if $R_{\text{red}}$ is Du Bois, then $H_{\mathfrak{m}}^{i}(R)\rightarrow H_{\mathfrak{m}}^{i}(R_{\text{red}})$ is surjective for every $i$. We find many applications of this result. For example, we answer a question of Kovács and Schwede [Inversion of adjunction for rational and Du Bois pairs, Algebra Number Theory 10 (2016), 969–1000; MR 3531359] on the Cohen–Macaulay property of Du Bois singularities. We obtain results on the injectivity of $\operatorname{Ext}$ that provide substantial partial answers to questions in Eisenbud et al. [Cohomology on toric varieties and local cohomology with monomial supports, J. Symbolic Comput. 29 (2000), 583–600] in characteristic $0$. These results can also be viewed as generalizations of the Kodaira vanishing theorem for Cohen–Macaulay Du Bois varieties. We prove results on the set-theoretic Cohen–Macaulayness of the defining ideal of Du Bois singularities, which are characteristic-$0$ analogs and generalizations of results of Singh–Walther and answer some of their questions in Singh and Walther [On the arithmetic rank of certain Segre products, in Commutative algebra and algebraic geometry, Contemporary Mathematics, vol. 390 (American Mathematical Society, Providence, RI, 2005), 147–155]. We extend results on the relation between Koszul cohomology and local cohomology for $F$-injective and Du Bois singularities first shown in Hochster and Roberts [The purity of the Frobenius and local cohomology, Adv. Math. 21 (1976), 117–172; MR 0417172 (54 #5230)]. We also prove that singularities of dense $F$-injective type deform.
Conjectures are given for Hilbert series related to polynomial invariants of finite general linear groups: one for invariants mod Frobenius powers of the irrelevant ideal and one for cofixed spaces of polynomials.
Given a non-negative integer n and a complete hereditary cotorsion triple , the notion of subcategories in an abelian category is introduced. It is proved that a virtually Gorenstein ring R is n-Gorenstein if and only if the subcategory of Gorenstein injective R-modules is with respect to the cotorsion triple , where stands for the subcategory of Gorenstein projectives. In the case when a subcategory of is closed under direct summands such that each object in admits a right -approximation, a Bazzoni characterization is given for to be . Finally, an Auslander–Reiten correspondence is established between the class of subcategories and that of certain subcategories of which are -coresolving covariantly finite and closed under direct summands.
In this article the $p$-essential dimension of generic symbols over fields of characteristic $p$ is studied. In particular, the $p$-essential dimension of the length $\ell$ generic $p$-symbol of degree $n+1$ is bounded below by $n+\ell$ when the base field is algebraically closed of characteristic $p$. The proof uses new techniques for working with residues in Milne–Kato $p$-cohomology and builds on work of Babic and Chernousov in the Witt group in characteristic 2. Two corollaries on $p$-symbol algebras (i.e, degree 2 symbols) result from this work. The generic $p$-symbol algebra of length $\ell$ is shown to have $p$-essential dimension equal to $\ell +1$ as a $p$-torsion Brauer class. The second is a lower bound of $\ell +1$ on the $p$-essential dimension of the functor $\operatorname{Alg}_{p^{\ell },p}$. Roughly speaking this says that you will need at least $\ell +1$ independent parameters to be able to specify any given algebra of degree $p^{\ell }$ and exponent $p$ over a field of characteristic $p$ and improves on the previously established lower bound of 3.
We investigate images of higher-order differential operators of polynomial algebras over a field $k$. We show that, when $\operatorname{char}k>0$, the image of the set of differential operators $\{\unicode[STIX]{x1D709}_{i}-\unicode[STIX]{x1D70F}_{i}\mid i=1,2,\ldots ,n\}$ of the polynomial algebra $k[\unicode[STIX]{x1D709}_{1},\ldots ,\unicode[STIX]{x1D709}_{n},z_{1},\ldots ,z_{n}]$ is a Mathieu subspace, where $\unicode[STIX]{x1D70F}_{i}\in k[\unicode[STIX]{x2202}_{z_{1}},\ldots ,\unicode[STIX]{x2202}_{z_{n}}]$ for $i=1,2,\ldots ,n$. We also show that, when $\operatorname{char}k=0$, the same conclusion holds for $n=1$. The problem concerning images of differential operators arose from the study of the Jacobian conjecture.
Let $R$ be a finite commutative ring of odd characteristic and let $V$ be a free $R$-module of finite rank. We classify symmetric inner products defined on $V$ up to congruence and find the number of such symmetric inner products. Additionally, if $R$ is a finite local ring, the number of congruent symmetric inner products defined on $V$ in each congruence class is determined.
In this work, we introduce a new set of invariants associated to the linear strands of a minimal free resolution of a $\mathbb{Z}$-graded ideal $I\subseteq R=\Bbbk [x_{1},\ldots ,x_{n}]$. We also prove that these invariants satisfy some properties analogous to those of Lyubeznik numbers of local rings. In particular, they satisfy a consecutiveness property that we prove first for the Lyubeznik table. For the case of squarefree monomial ideals, we get more insight into the relation between Lyubeznik numbers and the linear strands of their associated Alexander dual ideals. Finally, we prove that Lyubeznik numbers of Stanley–Reisner rings are not only an algebraic invariant but also a topological invariant, meaning that they depend on the homeomorphic class of the geometric realization of the associated simplicial complex and the characteristic of the base field.
We study the multiple Eisenstein series introduced by Gangl, Kaneko and Zagier. We give a proof of (restricted) finite double shuffle relations for multiple Eisenstein series by revealing an explicit connection between the Fourier expansion of multiple Eisenstein series and the Goncharov co-product on Hopf algebras of iterated integrals.
Fock and Goncharov conjectured that the indecomposable universally positive (i.e. atomic) elements of a cluster algebra should form a basis for the algebra. This was shown to be false by Lee, Li and Zelevinsky. However, we find that the theta bases of Gross, Hacking, Keel and Kontsevich do satisfy this conjecture for a slightly modified definition of universal positivity in which one replaces the positive atlas consisting of the clusters by an enlargement we call the scattering atlas. In particular, this uniquely characterizes the theta functions.
A very well-covered graph is an unmixed graph whose covering number is half of the number of vertices. We construct an explicit minimal free resolution of the cover ideal of a Cohen–Macaulay very well-covered graph. Using this resolution, we characterize the projective dimension of the edge ideal of a very well-covered graph in terms of a pairwise $3$-disjoint set of complete bipartite subgraphs of the graph. We also show nondecreasing property of the projective dimension of symbolic powers of the edge ideal of a very well-covered graph with respect to the exponents.
We introduce the notion of functionally compact sets into the theory of nonlinear generalized functions in the sense of Colombeau. The motivation behind our construction is to transfer, as far as possible, properties enjoyed by standard smooth functions on compact sets into the framework of generalized functions. Based on this concept, we introduce spaces of compactly supported generalized smooth functions that are close analogues to the test function spaces of distribution theory. We then develop the topological and functional–analytic foundations of these spaces.