To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a family of nonlinear rational recurrences of odd order which was introduced by Heideman and Hogan, and recently rediscovered in the theory of Laurent phenomenon algebras (a generalization of cluster algebras). All of these recurrences have the Laurent property, implying that for a particular choice of initial data (all initial values set to 1) they generate an integer sequence. For these particular sequences, Heideman and Hogan gave a direct proof of integrality by showing that the terms of the sequence also satisfy a linear recurrence relation with constant coefficients. Here we present an analogous result for the general solution of each of these recurrences.
We upper-bound the number of common zeros over a finite grid of multivariate polynomials and an arbitrary finite collection of their consecutive Hasse derivatives (in a coordinate-wise sense). To that end, we make use of the tool from Gröbner basis theory known as footprint. Then we establish and prove extensions in this context of a family of well-known results in algebra and combinatorics. These include Alon's combinatorial Nullstellensatz [1], existence and uniqueness of Hermite interpolating polynomials over a grid, estimations of the parameters of evaluation codes with consecutive derivatives [20], and bounds on the number of zeros of a polynomial by DeMillo and Lipton [8], Schwartz [25], Zippel [26, 27] and Alon and Füredi [2]. As an alternative, we also extend the Schwartz-Zippel bound to weighted multiplicities and discuss its connection to our extension of the footprint bound.
We study an operation, that we call lifting, creating nonisomorphic monomial curves from a single monomial curve. Our main result says that all but finitely many liftings of a monomial curve have Cohen–Macaulay tangent cones even if the tangent cone of the original curve is not Cohen–Macaulay. This implies that the Betti sequence of the tangent cone is eventually constant under this operation. Moreover, all liftings have Cohen–Macaulay tangent cones when the original monomial curve has a Cohen–Macaulay tangent cone. In this case, all the Betti sequences are just the Betti sequence of the original curve.
For a skew-symmetrizable cluster algebra ${\mathcal{A}}_{t_{0}}$ with principal coefficients at $t_{0}$, we prove that each seed $\unicode[STIX]{x1D6F4}_{t}$ of ${\mathcal{A}}_{t_{0}}$ is uniquely determined by its $C$-matrix, which was proposed by Fomin and Zelevinsky (Compos. Math. 143 (2007), 112–164) as a conjecture. Our proof is based on the fact that the positivity of cluster variables and sign coherence of $c$-vectors hold for ${\mathcal{A}}_{t_{0}}$, which was actually verified in Gross et al. (Canonical bases for cluster algebras, J. Amer. Math. Soc. 31(2) (2018), 497–608). Further discussion is provided in the sign-skew-symmetric case so as to obtain a weak version of the conjecture in this general case.
Let $k$ be a field and $R$ a standard graded $k$-algebra. We denote by $\operatorname{H}^{R}$ the homology algebra of the Koszul complex on a minimal set of generators of the irrelevant ideal of $R$. We discuss the relationship between the multiplicative structure of $\operatorname{H}^{R}$ and the property that $R$ is a Koszul algebra. More generally, we work in the setting of local rings and we show that certain conditions on the multiplicative structure of Koszul homology imply strong homological properties, such as existence of certain Golod homomorphisms, leading to explicit computations of Poincaré series. As an application, we show that the Poincaré series of all finitely generated modules over a stretched Cohen–Macaulay local ring are rational, sharing a common denominator.
In this paper, we study the singularities of a general hyperplane section $H$ of a three-dimensional quasi-projective variety $X$ over an algebraically closed field of characteristic $p>0$. We prove that if $X$ has only canonical singularities, then $H$ has only rational double points. We also prove, under the assumption that $p>5$, that if $X$ has only klt singularities, then so does $H$.
For a pair $(R,I)$, where $R$ is a standard graded domain of dimension $d$ over an algebraically closed field of characteristic 0, and $I$ is a graded ideal of finite colength, we prove that the existence of $\lim _{p\rightarrow \infty }e_{HK}(R_{p},I_{p})$ is equivalent, for any fixed $m\geqslant d-1$, to the existence of $\lim _{p\rightarrow \infty }\ell (R_{p}/I_{p}^{[p^{m}]})/p^{md}$. This we get as a consequence of Theorem 1.1: as $p\longrightarrow \infty$, the convergence of the Hilbert–Kunz (HK) density function $f(R_{p},I_{p})$ is equivalent to the convergence of the truncated HK density functions $f_{m}(R_{p},I_{p})$ (in $L^{\infty }$ norm) of the mod$p$reductions$(R_{p},I_{p})$, for any fixed $m\geqslant d-1$. In particular, to define the HK density function $f_{R,I}^{\infty }$ in char 0, it is enough to prove the existence of $\lim _{p\rightarrow \infty }f_{m}(R_{p},I_{p})$, for any fixed $m\geqslant d-1$. This allows us to prove the existence of $e_{HK}^{\infty }(R,I)$ in many new cases, for example, when Proj R is a Segre product of curves.
Let $R$ be a commutative Noetherian ring of prime characteristic $p$. In this paper, we give a short proof using filter regular sequences that the set of associated prime ideals of $H_{I}^{t}(R)$ is finite for any ideal $I$ and for any $t\geqslant 0$ when $R$ has finite $F$-representation type or finite singular locus. This extends a previous result by Takagi–Takahashi and gives affirmative answers for a problem of Huneke in many new classes of rings in positive characteristic. We also give a criterion about the singularities of $R$ (in any characteristic) to guarantee that the set $\operatorname{Ass}H_{I}^{2}(R)$ is always finite.
Given a nonincreasing function f : ℤ≥ 0 \{0} → ℤ≥ 0 such that (i) f(k) − f(k + 1) ≤ 1 for all k ≥ 1 and (ii) if a = f(1) and b = limk → ∞f(k), then |f−1(a)| ≤ |f−1(a − 1)| ≤ ··· ≤ |f−1(b + 1)|, a system of generators of a monomial ideal I ⊂ K[x1, . . ., xn] for which depth S/Ik = f(k) for all k ≥ 1 is explicitly described. Furthermore, we give a characterization of triplets of integers (n, d, r) with n > 0, d ≥ 0 and r > 0 with the properties that there exists a monomial ideal I ⊂ S = K[x1, . . ., xn] for which limk→∞ depth S/Ik = d and dstab(I) = r, where dstab(I) is the smallest integer k0 ≥ 1 with depth S/Ik0 = depth S/Ik0+1 = depth S/Ik0+2 = ···.
Let $X$ be a quasi-compact and quasi-separated scheme. There are two fundamental and pervasive facts about the unbounded derived category of $X$: (1) $\mathsf{D}_{\text{qc}}(X)$ is compactly generated by perfect complexes and (2) if $X$ is noetherian or has affine diagonal, then the functor $\unicode[STIX]{x1D6F9}_{X}:\mathsf{D}(\mathsf{QCoh}(X))\rightarrow \mathsf{D}_{\text{qc}}(X)$ is an equivalence. Our main results are that for algebraic stacks in positive characteristic, the assertions (1) and (2) are typically false.
We establish a combinatorial realization of continued fractions as quotients of cardinalities of sets. These sets are sets of perfect matchings of certain graphs, the snake graphs, that appear naturally in the theory of cluster algebras. To a continued fraction $[a_{1},a_{2},\ldots ,a_{n}]$ we associate a snake graph ${\mathcal{G}}[a_{1},a_{2},\ldots ,a_{n}]$ such that the continued fraction is the quotient of the number of perfect matchings of ${\mathcal{G}}[a_{1},a_{2},\ldots ,a_{n}]$ and ${\mathcal{G}}[a_{2},\ldots ,a_{n}]$. We also show that snake graphs are in bijection with continued fractions. We then apply this connection between cluster algebras and continued fractions in two directions. First we use results from snake graph calculus to obtain new identities for the continuants of continued fractions. Then we apply the machinery of continued fractions to cluster algebras and obtain explicit direct formulas for quotients of elements of the cluster algebra as continued fractions of Laurent polynomials in the initial variables. Building on this formula, and using classical methods for infinite periodic continued fractions, we also study the asymptotic behavior of quotients of elements of the cluster algebra.
Our main purpose is to extend several results of interest that have been proved for modules over integral domains to modules over arbitrary commutative rings $R$ with identity. The classical ring of quotients $Q$ of $R$ will play the role of the field of quotients when zero-divisors are present. After discussing torsion-freeness and divisibility (Sections 2–3), we study Matlis-cotorsion modules and their roles in two category equivalences (Sections 4–5). These equivalences are established via the same functors as in the domain case, but instead of injective direct sums $\oplus Q$ one has to take the full subcategory of $Q$-modules into consideration. Finally, we prove results on Matlis rings, i.e. on rings for which $Q$ has projective dimension $1$ (Theorem 6.4).
We show that the canonical lift construction for ordinary elliptic curves over perfect fields of characteristic $p>0$ extends uniquely to arbitrary families of ordinary elliptic curves, even over $p$-adic formal schemes. In particular, the universal ordinary elliptic curve has a canonical lift. The existence statement is largely a formal consequence of the universal property of Witt vectors applied to the moduli space of ordinary elliptic curves, at least with enough level structure. As an application, we show how this point of view allows for more formal proofs of recent results of Finotti and Erdoğan.
This paper is a complement to the work of the second author on modular quotient singularities in odd characteristic. Here, we prove that if V is a three-dimensional vector space over a field of characteristic 2 and G < GL(V) is a finite subgroup generated by pseudoreflections and possessing a two-dimensional invariant subspace W such that the restriction of G to W is isomorphic to the group SL2(𝔽2n), then the quotient V/G is non-singular. This, together with earlier known results on modular quotient singularities, implies first that a theorem of Kemper and Malle on irreducible groups generated by pseudoreflections generalizes to reducible groups in dimension three, and, second, that the classification of three-dimensional isolated singularities that are quotients of a vector space by a linear finite group reduces to Vincent's classification of non-modular isolated quotient singularities.
We construct a norm on the nonzero elements of a Prüfer domain and extend this concept to the set of ideals of a Prüfer domain. These norms are used to study factorization properties Prüfer of domains.
Noetherian dimer algebras form a prominent class of examples of noncommutative crepant resolutions (NCCRs). However, dimer algebras that are noetherian are quite rare, and we consider the question: how close are nonnoetherian homotopy dimer algebras to being NCCRs? To address this question, we introduce a generalization of NCCRs to nonnoetherian tiled matrix rings. We show that if a noetherian dimer algebra is obtained from a nonnoetherian homotopy dimer algebra A by contracting each arrow whose head has indegree 1, then A is a noncommutative desingularization of its nonnoetherian centre. Furthermore, if any two arrows whose tails have indegree 1 are coprime, then A is a nonnoetherian NCCR.
Let $G$ be a reductive group over an algebraically closed subfield $k$ of $\mathbb{C}$ of characteristic zero, $H\subseteq G$ an observable subgroup normalised by a maximal torus of $G$ and $X$ an affine $k$-variety acted on by $G$. Popov and Pommerening conjectured in the late 1970s that the invariant algebra $k[X]^{H}$ is finitely generated. We prove the conjecture for: (1) subgroups of $\operatorname{SL}_{n}(k)$ closed under left (or right) Borel action and for: (2) a class of Borel regular subgroups of classical groups. We give a partial affirmative answer to the conjecture for general regular subgroups of $\operatorname{SL}_{n}(k)$.
Given a smooth variety $X$ and an effective Cartier divisor $D\subset X$, we show that the cohomological Chow group of 0-cycles on the double of $X$ along $D$ has a canonical decomposition in terms of the Chow group of 0-cycles $\text{CH}_{0}(X)$ and the Chow group of 0-cycles with modulus $\text{CH}_{0}(X|D)$ on $X$. When $X$ is projective, we construct an Albanese variety with modulus and show that this is the universal regular quotient of $\text{CH}_{0}(X|D)$. As a consequence of the above decomposition, we prove the Roitman torsion theorem for the 0-cycles with modulus. We show that $\text{CH}_{0}(X|D)$ is torsion-free and there is an injective cycle class map $\text{CH}_{0}(X|D){\hookrightarrow}K_{0}(X,D)$ if $X$ is affine. For a smooth affine surface $X$, this is strengthened to show that $K_{0}(X,D)$ is an extension of $\text{CH}_{1}(X|D)$ by $\text{CH}_{0}(X|D)$.
We advocate the use of cluster algebras and their $y$-variables in the study of hyperbolic 3-manifolds. We study hyperbolic structures on the mapping tori of pseudo-Anosov mapping classes of punctured surfaces, and show that cluster $y$-variables naturally give the solutions of the edge-gluing conditions of ideal tetrahedra. We also comment on the completeness of hyperbolic structures.
We describe a general method for expanding a truncated $G$-iterative Hasse–Schmidt derivation, where $G$ is an algebraic group. We give examples of algebraic groups for which our method works.