To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Our object of study is a rational map defined by homogeneous forms $g_{1},\ldots ,g_{n}$, of the same degree $d$, in the homogeneous coordinate ring $R=k[x_{1},\ldots ,x_{s}]$ of $\mathbb{P}_{k}^{s-1}$. Our goal is to relate properties of $\unicode[STIX]{x1D6F9}$, of the homogeneous coordinate ring $A=k[g_{1},\ldots ,g_{n}]$ of the variety parameterized by $\unicode[STIX]{x1D6F9}$, and of the Rees algebra ${\mathcal{R}}(I)$, the bihomogeneous coordinate ring of the graph of $\unicode[STIX]{x1D6F9}$. For a regular map $\unicode[STIX]{x1D6F9}$, for instance, we prove that ${\mathcal{R}}(I)$ satisfies Serre’s condition $R_{i}$, for some $i>0$, if and only if $A$ satisfies $R_{i-1}$ and $\unicode[STIX]{x1D6F9}$ is birational onto its image. Thus, in particular, $\unicode[STIX]{x1D6F9}$ is birational onto its image if and only if ${\mathcal{R}}(I)$ satisfies $R_{1}$. Either condition has implications for the shape of the core, namely, $\text{core}(I)$ is the multiplier ideal of $I^{s}$ and $\text{core}(I)=(x_{1},\ldots ,x_{s})^{sd-s+1}.$ Conversely, for $s=2$, either equality for the core implies birationality. In addition, by means of the generalized rows of the syzygy matrix of $g_{1},\ldots ,g_{n}$, we give an explicit method to reduce the nonbirational case to the birational one when $s=2$.
The first example of a torsion-free abelian group $(A,+,0)$ such that the quotient group of $A$ modulo the square subgroup is not a nil-group is indicated (for both associative and general rings). In particular, the answer to the question posed by Stratton and Webb [‘Abelian groups, nil modulo a subgroup, need not have nil quotient group’, Publ. Math. Debrecen27 (1980), 127–130] is given for torsion-free groups. A new method of constructing indecomposable nil-groups of any rank from $2$ to $2^{\aleph _{0}}$ is presented. Ring multiplications on $p$-pure subgroups of the additive group of the ring of $p$-adic integers are investigated using only elementary methods.
In this article, we consider the conjectured relationship between $F$-purity and log canonicity for polynomials over $\mathbb{C}$. In particular, we show that log canonicity corresponds to dense $F$-pure type for all polynomials whose supporting monomials satisfy a certain nondegeneracy condition. We also show that log canonicity corresponds to dense $F$-pure type for very general polynomials over $\mathbb{C}$. Our methods rely on showing that the $F$-pure and log canonical thresholds agree for infinitely many primes, and we accomplish this by comparing these thresholds with the thresholds associated to their monomial term ideals.
We study some questions on numerical semigroups of type 2. On the one hand, we investigate the relation between the genus and the Frobenius number. On the other hand, for two fixed positive integers g1, g2, we give necessary and sufficient conditions in order to have a numerical semigroup S such that {g1, g2} is the set of its pseudo-Frobenius numbers and, moreover, we explicitly build families of such numerical semigroups.
In 1981, Thompson proved that, if $n\geqslant 1$ is any integer and $G$ is any finite subgroup of $\text{GL}_{n}(\mathbb{C})$, then $G$ has a semi-invariant of degree at most $4n^{2}$. He conjectured that, in fact, there is a universal constant $C$ such that for any $n\in \mathbb{N}$ and any finite subgroup $G<\text{GL}_{n}(\mathbb{C})$, $G$ has a semi-invariant of degree at most $Cn$. This conjecture would imply that the ${\it\alpha}$-invariant ${\it\alpha}_{G}(\mathbb{P}^{n-1})$, as introduced by Tian in 1987, is at most $C$. We prove Thompson’s conjecture in this paper.
We compute the characters of the simple $\text{GL}$-equivariant holonomic ${\mathcal{D}}$-modules on the vector spaces of general, symmetric, and skew-symmetric matrices. We realize some of these ${\mathcal{D}}$-modules explicitly as subquotients in the pole order filtration associated to the $\text{determinant}/\text{Pfaffian}$ of a generic matrix, and others as local cohomology modules. We give a direct proof of a conjecture of Levasseur in the case of general and skew-symmetric matrices, and provide counterexamples in the case of symmetric matrices. The character calculations are used in subsequent work with Weyman to describe the ${\mathcal{D}}$-module composition factors of local cohomology modules with determinantal and Pfaffian support.
We investigate symbolic and regular powers of monomial ideals. For a square-free monomial ideal I ⊆ 𝕜[x0, … , xn] we show that for all positive integers m, t and r, where e is the big-height of I and . This captures two conjectures (r = 1 and r = e): one of Harbourne and Huneke, and one of Bocci et al. We also introduce the symbolic polyhedron of a monomial ideal and use this to explore symbolic powers of non-square-free monomial ideals.
Over a Cohen–Macaulay (CM) local ring, we characterize those modules that can be obtained as a direct limit of finitely generated maximal CM modules. We point out two consequences of this characterization: (1) Every balanced big CM module, in the sense of Hochster, can be written as a direct limit of small CM modules. In analogy with Govorov and Lazard's characterization of flat modules as direct limits of finitely generated free modules, one can view this as a “structure theorem” for balanced big CM modules. (2) Every finitely generated module has a pre-envelope with respect to the class of finitely generated maximal CM modules. This result is, in some sense, dual to the existence of maximal CM approximations, which has been proved by Auslander and Buchweitz.
In this note, we have obtained a Whitehead-like tower of a module by considering a suitable set of morphisms and shown that the different stages of the tower are the Adams cocompletions of the module with respect to the suitably chosen set of morphisms.
Let $I$ and $J$ be homogeneous ideals in a standard graded polynomial ring. We study upper bounds of the Hilbert function of the intersection of $I$ and $g(J)$, where $g$ is a general change of coordinates. Our main result gives a generalization of Green’s hyperplane section theorem.
In analogy with the complex analytic case, Mustaţă constructed (a family of) Bernstein–Sato polynomials for the structure sheaf ${\mathcal{O}}_{X}$ and a hypersurface $(f=0)$ in $X$, where $X$ is a regular variety over an $F$-finite field of positive characteristic (see Mustaţă, Bernstein–Sato polynomials in positive characteristic, J. Algebra 321(1) (2009), 128–151). He shows that the suitably interpreted zeros of his Bernstein–Sato polynomials correspond to the $F$-jumping numbers of the test ideal filtration ${\it\tau}(X,f^{t})$. In the present paper we generalize Mustaţă’s construction replacing ${\mathcal{O}}_{X}$ by an arbitrary $F$-regular Cartier module $M$ on $X$ and show an analogous correspondence of the zeros of our Bernstein–Sato polynomials with the jumping numbers of the associated filtration of test modules ${\it\tau}(M,f^{t})$ provided that $f$ is a nonzero divisor on $M$.
Building on coprincipal mesoprimary decomposition [Kahle and Miller, Decompositions of commutative monoid congruences and binomial ideals, Algebra and Number Theory 8 (2014), 1297–1364], we combinatorially construct an irreducible decomposition of any given binomial ideal. In a parallel manner, for congruences in commutative monoids we construct decompositions that are direct combinatorial analogues of binomial irreducible decompositions, and for binomial ideals we construct decompositions into ideals that are as irreducible as possible while remaining binomial. We provide an example of a binomial ideal that is not an intersection of irreducible binomial ideals, thus answering a question of Eisenbud and Sturmfels [Binomial ideals, Duke Math. J. 84 (1996), 1–45].
The elasticity of an atomic integral domain is, in some sense, a measure of how far the domain is from being a half-factorial domain. We consider the relationship between the elasticity of a domain R and the elasticity of its polynomial ring R[x]. For example, if R has at least one atom, a sufficient condition for the polynomial ring R[x] to have elasticity 1 is that every non-constant irreducible polynomial f ∈ R[x] be irreducible in K[x]. We will determine the integral domains R whose polynomial rings satisfy this condition.
Let $R$ be a commutative Gorenstein ring. A result of Araya reduces the Auslander–Reiten conjecture on the vanishing of self-extensions to the case where $R$ has Krull dimension at most one. In this paper we extend Araya’s result to certain $R$-algebras. As a consequence of our argument, we obtain examples of bound quiver algebras that satisfy the Auslander–Reiten conjecture.
We apply the concept of braiding sequences to link polynomials to show polynomial growth bounds on the derivatives of the Jones polynomial evaluated on S1 and of the Brandt–Lickorish–Millett–Ho polynomial evaluated on [–2, 2] on alternating and positive knots of given genus. For positive links, boundedness criteria for the coefficients of the Jones, HOMFLY and Kauffman polynomials are derived. (This is a continuation of the paper ‘Applications of braiding sequences. I’: Commun. Contemp. Math.12(5) (2010), 681–726.)
The main aim of this paper is to classify Ulrich ideals and Ulrich modules over two-dimensional Gorenstein rational singularities (rational double points) from a geometric point of view. To achieve this purpose, we introduce the notion of (weakly) special Cohen–Macaulay modules with respect to ideals, and study the relationship between those modules and Ulrich modules with respect to good ideals.
We consider plane Cremona maps with proper base points and the base ideal generated by the linear system of forms defining the map. The object of this work is to study the link between the algebraic properties of the base ideal and those of the ideal of these points fattened by the virtual multiplicities arising from the linear system. We reveal conditions which naturally regulate this association, with particular emphasis on the homological side. While most classical numerical inequalities concern the three highest virtual multiplicities, here we emphasize also the role of one single highest multiplicity. In this vein we describe classes of Cremona maps for large and small values of the highest virtual multiplicity. We also deal with the delicate question as to when is the base ideal non-saturated and consider the structure of its saturation.
We prove that the Hilbert–Kunz multiplicity is upper semi-continuous in F-finite rings and algebras of essentially finite type over an excellent local ring.
Many results are known about test ideals and $F$-singularities for $\mathbb{Q}$-Gorenstein rings. In this paper, we generalize many of these results to the case when the symbolic Rees algebra ${\mathcal{O}}_{X}\oplus {\mathcal{O}}_{X}(-K_{X})\oplus {\mathcal{O}}_{X}(-2K_{X})\oplus \cdots \,$ is finitely generated (or more generally, in the log setting for $-K_{X}-\unicode[STIX]{x1D6E5}$). In particular, we show that the $F$-jumping numbers of $\unicode[STIX]{x1D70F}(X,\mathfrak{a}^{t})$ are discrete and rational. We show that test ideals $\unicode[STIX]{x1D70F}(X)$ can be described by alterations as in Blickle–Schwede–Tucker (and hence show that splinters are strongly $F$-regular in this setting – recovering a result of Singh). We demonstrate that multiplier ideals reduce to test ideals under reduction modulo $p$ when the symbolic Rees algebra is finitely generated. We prove that Hartshorne–Speiser–Lyubeznik–Gabber-type stabilization still holds. We also show that test ideals satisfy global generation properties in this setting.
Abstract Let G be a linear algebraic group over an algebraically closed field 𝕜 acting rationally on a G-module V with its null-cone. Let δ(G, V) and σ(G, V) denote the minimal number d such that for every and , respectively, there exists a homogeneous invariant f of positive degree at most d such that f(v) ≠ 0. Then δ(G) and σ(G) denote the supremum of these numbers taken over all G-modules V. For positive characteristics, we show that δ(G) = ∞ for any subgroup G of GL2(𝕜) that contains an infinite unipotent group, and σ(G) is finite if and only if G is finite. In characteristic zero, δ(G) = 1 for any group G, and we show that if σ(G) is finite, then G0 is unipotent. Our results also lead to a more elementary proof that βsep(G) is finite if and only if G is finite.