To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study Serre duality in the singularity category of an isolated Gorenstein singularity and find an explicit formula for the duality pairing in terms of generalised fractions and residues. For hypersurfaces we recover the residue formula of the string theorists Kapustin and Li. These results are obtained from an explicit construction of complete injective resolutions of maximal Cohen–Macaulay modules.
Fomin–Zelevinsky conjectured that in any cluster algebra, the cluster monomials are linearly independent and that the exchange graph and cluster complex are independent of the choice of coefficients. We confirm these conjectures for all skew-symmetric cluster algebras.
We prove that neat and coneat submodules of a module coincide when $R$ is a commutative ring such that every maximal ideal is principal, extending a recent result by Fuchs. We characterise absolutely neat (coneat) modules and study their closure properties. We show that a module is absolutely neat if and only if it is injective with respect to the Dickson torsion theory.
We deal with aspects of direct and inverse problems in parameterized Picard–Vessiot (PPV) theory. It is known that, for certain fields, a linear differential algebraic group (LDAG) $G$ is a PPV Galois group over these fields if and only if $G$ contains a Kolchin-dense finitely generated group. We show that, for a class of LDAGs $G$, including unipotent groups, $G$ is such a group if and only if it has differential type $0$. We give a procedure to determine if a parameterized linear differential equation has a PPV Galois group in this class and show how one can calculate the PPV Galois group of a parameterized linear differential equation if its Galois group has differential type $0$.
In this paper, we further study Tate cohomology of modules over a commutative ring with respect to semidualizing modules using the ideals of Sather-Wagstaff et al. [‘Tate cohomology with respect to semidualizing modules’, J. Algebra324 (2010), 2336–2368]. In particular, we prove a balance result for the Tate cohomology ${\widehat{\mathrm{Ext} }}^{n} $ for any $n\in \mathbb{Z} $. This result complements the work of Sather-Wagstaff et al., who proved that the result holds for any $n\geq 1$. We also discuss some vanishing properties of Tate cohomology.
A central problem in liaison theory is to decide whether every arithmetically Cohen–Macaulay subscheme of projective $n$-space can be linked by a finite number of arithmetically Gorenstein schemes to a complete intersection. We show that this can indeed be achieved if the given scheme is also generically Gorenstein and we allow the links to take place in an $(n+ 1)$-dimensional projective space. For example, this result applies to all reduced arithmetically Cohen–Macaulay subschemes. We also show that every union of fat points in projective 3-space can be linked in the same space to a union of simple points in finitely many steps, and hence to a complete intersection in projective 4-space.
A singularity in characteristic zero is said to be of dense$F$-pure type if its modulo $p$ reduction is locally Frobenius split for infinitely many $p$. We prove that if $x\in X$ is an isolated log canonical singularity with $\mu (x\in X)\leq 2$ (where the invariant $\mu $ is as defined in Definition 1.4), then it is of dense $F$-pure type. As a corollary, we prove the equivalence of log canonicity and being of dense $F$-pure type in the case of three-dimensional isolated $ \mathbb{Q} $-Gorenstein normal singularities.
Let $\mathfrak{a}$ be a homogeneous ideal of a polynomial ring $R$ in $n$ variables over a field $\mathbb{k}$. Assume that $\mathrm{depth} (R/ \mathfrak{a})\geq t$, where $t$ is some number in $\{ 0, \ldots , n\} $. A result of Peskine and Szpiro says that if $\mathrm{char} (\mathbb{k})\gt 0$, then the local cohomology modules ${ H}_{\mathfrak{a}}^{i} (M)$ vanish for all $i\gt n- t$ and all $R$-modules $M$. In characteristic $0$, there are counterexamples to this for all $t\geq 4$. On the other hand, when $t\leq 2$, by exploiting classical results of Grothendieck, Lichtenbaum, Hartshorne and Ogus it is not difficult to extend the result to any characteristic. In this paper we settle the remaining case; specifically, we show that if $\mathrm{depth} (R/ \mathfrak{a})\geq 3$, then the local cohomology modules ${ H}_{\mathfrak{a}}^{i} (M)$ vanish for all $i\gt n- 3$ and all $R$-modules $M$, whatever the characteristic of $\mathbb{k}$ is.
Let $R$ be a commutative Noetherian ring, $M$ be a finitely generated $R$-module and $\mathfrak{a}$ be an ideal of $R$ such that $\mathfrak{a}M\not = M$. We show among the other things that, if $c$ is a nonnegative integer such that ${ H}_{\mathfrak{a}}^{i} (M)= 0$ for all $i\lt c$, then there is an isomorphism $\mathrm{End} ({ H}_{\mathfrak{a}}^{c} (M))\cong { \mathrm{Ext} }_{R}^{c} ({ H}_{\mathfrak{a}}^{c} (M), M)$; and if $c$ is a nonnegative integer such that ${ H}_{\mathfrak{a}}^{i} (M)= 0$ for all $i\not = c$, there are the following isomorphisms:
for all $i\in { \mathbb{N} }_{0} $ and all ideals $\mathfrak{b}$ of $R$ with $\mathfrak{b}\supseteq \mathfrak{a}$. We also prove that if $\mathfrak{a}$ and $\mathfrak{b}$ are ideals of $R$ with $\mathfrak{b}\supseteq \mathfrak{a}$ and $c: = \mathrm{grade} (\mathfrak{a}, M)$, then there exists a natural homomorphism from $\mathrm{End} ({ H}_{\mathfrak{a}}^{c} (M))$ to $\mathrm{End} ({ H}_{\mathfrak{b}}^{c} (M))$, where $\mathrm{grade} (\mathfrak{a}, M)$ is the maximum length of $M$-sequences in $\mathfrak{a}$.
A recent result of Eisenbud–Schreyer and Boij–Söderberg proves that the Betti diagram of any graded module decomposes as a positive rational linear combination of pure diagrams. When does this numerical decomposition correspond to an actual filtration of the minimal free resolution? Our main result gives a sufficient condition for this to happen. We apply it to show the non-existence of free resolutions with some plausible-looking Betti diagrams and to study the semigroup of quiver representations of the simplest ‘wild’ quiver.
For a characteristic-$p\gt 0$ variety $X$ with controlled $F$-singularities, we state conditions which imply that a divisorial sheaf is Cohen–Macaulay or at least has depth $\geq $3 at certain points. This mirrors results of Kollár for varieties in characteristic 0. As an application, we show that relative canonical sheaves are compatible with arbitrary base change for certain families with sharply $F$-pure fibers.
Let $S$ be a polynomial ring over a field $K$ and let $I$ be a monomial ideal of $S$. We say that $I$ is MHC (that is, $I$ satisfies the maximal height condition for the associated primes of $I$) if there exists a prime ideal $\mathfrak{p}\in {\mathrm{Ass} }_{S} \hspace{0.167em} S/ I$ for which $\mathrm{ht} (\mathfrak{p})$ equals the number of indeterminates that appear in the minimal set of monomials generating $I$. Let $I= { \mathop{\bigcap }\nolimits}_{i= 1}^{k} {Q}_{i} $ be the irreducible decomposition of $I$ and let $m(I)= \max \{ \vert Q_{i}\vert - \mathrm{ht} ({Q}_{i} ): 1\leq i\leq k\} $, where $\vert {Q}_{i} \vert $ denotes the total degree of ${Q}_{i} $. Then it can be seen that when $I$ is primary, $\mathrm{reg} (S/ I)= m(I)$. In this paper we improve this result and show that whenever $I$ is MHC, then $\mathrm{reg} (S/ I)= m(I)$ provided $\vert {\mathrm{Ass} }_{S} \hspace{0.167em} S/ I\vert \leq 2$. We also prove that $m({I}^{n} )\leq n\max \{ \vert Q_{i}\vert : 1\leq i\leq ~k\} - \mathrm{ht} (I)$, for all $n\geq 1$. In addition we show that if $I$ is MHC and $w$ is an indeterminate which is not in the monomials generating $I$, then $\mathrm{reg} (S/ \mathop{(I+ {w}^{d} S)}\nolimits ^{n} )\leq \mathrm{reg} (S/ I)+ nd- 1$ for all $n\geq 1$ and $d$ large enough. Finally, we implement an algorithm for the computation of $m(I)$.
We study the top left derived functors of the generalised $I$-adic completion and obtain equivalent properties concerning the vanishing or nonvanishing of the modules ${L}_{i} {\Lambda }_{I} (M, N)$. We also obtain some results for the sets $\text{Coass} ({L}_{i} {\Lambda }_{I} (M; N))$ and ${\text{Cosupp} }_{R} ({ H}_{i}^{I} (M; N))$.
We construct two bases for each cluster algebra coming from a triangulated surface without punctures. We work in the context of a coefficient system coming from a full-rank exchange matrix, such as principal coefficients.
Is the cohomology of the classifying space of a p-compact group, with Noetherian twisted coefficients, a Noetherian module? In this paper we provide, over the ring of p-adic integers, such a generalization to p-compact groups of the Evens–Venkov Theorem. We consider the cohomology of a space with coefficients in a module, and we compare Noetherianity over the field with p elements with Noetherianity over the p-adic integers, in the case when the fundamental group is a finite p-group.
To each tagged triangulation of a surface with marked points and non-empty boundary we associate a quiver with potential in such a way that whenever we apply a flip to a tagged triangulation the Jacobian algebra of the quiver with potential (QP) associated to the resulting tagged triangulation is isomorphic to the Jacobian algebra of the QP obtained by mutating the QP of the original one. Furthermore, we show that any two tagged triangulations are related by a sequence of flips compatible with QP-mutation. We also prove that, for each of the QPs constructed, the ideal of the non-completed path algebra generated by the cyclic derivatives is admissible and the corresponding quotient is isomorphic to the Jacobian algebra. These results, which generalize some of the second author’s previous work for ideal triangulations, are then applied to prove properties of cluster monomials, like linear independence, in the cluster algebra associated to the given surface by Fomin, Shapiro and Thurston (with an arbitrary system of coefficients).
We prove a conjecture of Kontsevich, which asserts that the iterations of the non-commutative rational map Fr:(x,y)→(xyx−1,(1+yr)x−1) are given by non-commutative Laurent polynomials with non-negative integer coefficients.
Let $R$ be a commutative ring. The regular digraph of ideals of $R$, denoted by $\Gamma (R)$, is a digraph whose vertex set is the set of all nontrivial ideals of $R$ and, for every two distinct vertices $I$ and $J$, there is an arc from $I$ to $J$ whenever $I$ contains a nonzero divisor on $J$. In this paper, we study the connectedness of $\Gamma (R)$. We also completely characterise the diameter of this graph and determine the number of edges in $\Gamma (R)$, whenever $R$ is a finite direct product of fields. Among other things, we prove that $R$ has a finite number of ideals if and only if $\mathrm {N}_{\Gamma (R)}(I)$ is finite, for all vertices $I$ in $\Gamma (R)$, where $\mathrm {N}_{\Gamma (R)}(I)$ is the set of all adjacent vertices to $I$ in $\Gamma (R)$.
We study the geometry underlying the difference between non-negative polynomials and sums of squares (SOS). The hypersurfaces that discriminate these two cones for ternary sextics and quaternary quartics are shown to be Noether–Lefschetz loci of K3 surfaces. The projective duals of these hypersurfaces are defined by rank constraints on Hankel matrices. We compute their degrees using numerical algebraic geometry, thereby verifying results due to Maulik and Pandharipande. The non-SOS extreme rays of the two cones of non-negative forms are parametrized, respectively, by the Severi variety of plane rational sextics and by the variety of quartic symmetroids.