To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A notion of Hochschild cohomology HH*(𝒜) of an abelian category 𝒜 was defined by Lowen and Van den Bergh (Adv. Math. 198 (2005), 172–221). They also showed the existence of a characteristic morphism χ from the Hochschild cohomology of 𝒜 into the graded centre ℨ*(Db(𝒜)) of the bounded derived category of 𝒜. An element c∈HH2(𝒜) corresponds to a first-order deformation 𝒜c of 𝒜 (Lowen and Van den Bergh, Trans. Amer. Math. Soc. 358 (2006), 5441–5483). The problem of deforming an object M∈Db(𝒜) to Db(𝒜c) was treated by Lowen (Comm. Algebra 33 (2005), 3195–3223). In this paper we show that the element χ(c)M∈Ext𝒜2(M,M) is precisely the obstruction to deforming M to Db(𝒜c). Hence, this paper provides a missing link between the above works. Finally we discuss some implications of these facts in the direction of a ‘derived deformation theory’.
We give the first examples over finite fields of rings of invariants that are not finitely generated. (The examples work over arbitrary fields, for example the rational numbers.) The group involved can be as small as three copies of the additive group. The failure of finite generation comes from certain elliptic fibrations or abelian surface fibrations having positive Mordell–Weil rank. Our work suggests a generalization of the Morrison–Kawamata cone conjecture on Calabi–Yau fiber spaces to klt Calabi–Yau pairs. We prove the conjecture in dimension two under the assumption that the anticanonical bundle is semi-ample.
Let k be an algebraically closed field of positive characteristic p. We consider which finite groups G have the property that every faithful action of G on a connected smooth projective curve over k lifts to characteristic zero. Oort conjectured that cyclic groups have this property. We show that if a cyclic-by-p group G has this property, then G must be either cyclic or dihedral, with the exception of A4 in characteristic two. This proves one direction of a strong form of the Oort conjecture.
We describe an algorithm for computing parameter-test-ideals in certain local Cohen–Macaulay rings. The algorithm is based on the study of a Frobenius map on the injective hull of the residue field of the ring and on the application of Sharp’s notion of ‘special ideals’. Our techniques also provide an algorithm for computing indices of nilpotency of Frobenius actions on top local cohomology modules of the ring and on the injective hull of its residue field. The study of nilpotent elements on injective hulls of residue fields also yields a great simplification of the proof of the celebrated result in the article Generators of D-modules in positive characteristic (J. Alvarez-Montaner, M. Blickle and G. Lyubeznik, Math. Res. Lett. 12 (2005), 459–473).
Let R and S be commutative rings, not necessarily with identity. We investigate the ideals, prime ideals, radical ideals, primary ideals, and maximal ideals of R×S. Unlike the case where R and S have an identity, an ideal (or primary ideal, or maximal ideal) of R×S need not be a ‘subproduct’ I×J of ideals. We show that for a ring R, for each commutative ring S every ideal (or primary ideal, or maximal ideal) is a subproduct if and only if R is an e-ring (that is, for r∈R, there exists er∈R with err=r) (or u-ring (that is, for each proper ideal A of R, )), the Abelian group (R/R2 ,+)has no maximal subgroups).
In this paper we prove that most ropes of arbitrary multiplicity supported on smooth curves can be smoothed. By a rope being smoothable we mean that the rope is the flat limit of a family of smooth, irreducible curves. To construct a smoothing, we connect, on the one hand, deformations of a finite morphism to projective space and, on the other hand, morphisms from a rope to projective space. We also prove a general result of independent interest, namely that finite covers onto smooth irreducible curves embedded in projective space can be deformed to a family of 1:1 maps. We apply our general theory to prove the smoothing of ropes of multiplicity 3 on P1. Even though this paper focuses on ropes of dimension 1, our method yields a general approach to deal with the smoothing of ropes of higher dimension.
We generalize Gaeta’s theorem to the family of determinantal schemes. In other words, we show that the schemes defined by minors of a fixed size of a matrix with polynomial entries belong to the same G-biliaison class of a complete intersection whenever they have maximal possible codimension, given the size of the matrix and of the minors that define them.
A proper ideal I of a ring R is said to be strongly irreducible if for each pair of ideals A and B of R, implies that either or . In this paper we study strongly irreducible ideals in different rings. The relations between strongly irreducible ideals of a ring and strongly irreducible ideals of localizations of the ring are also studied. Furthermore, a topology similar to the Zariski topology related to strongly irreducible ideals is introduced. This topology has the Zariski topology defined by prime ideals as one of its subspace topologies.
Heitmann’s proof of the direct summand conjecture has opened a new approach to the study of homological conjectures in mixed characteristic. Inspired by his work and by the methods of almost ring theory, we discuss a normalized length for certain torsion modules, which was introduced by Faltings. Using the normalized length and the Frobenius map, we prove some results of local cohomology for local rings in mixed characteristic, which has an immediate implication for the subject of splinters studied by Singh.
Let M and N be finitely generated and graded modules over a standard positive graded commutative Noetherian ring R, with irrelevant ideal R+. Let be the nth component of the graded generalized local cohomology module . In this paper we study the asymptotic behavior of Assf R+ () as n → –∞ whenever k is the least integer j for which the ordinary local cohomology module is not finitely generated.
For any abelian group G and any function f: G → G we define a commutative binary operation or ‘multiplication’ on G in terms of f. We give necessary and sufficient conditions on f for G to extend to a commutative ring with the new multiplication. In the case where G is an elementary abelian p–group of odd order, we classify those functions which extend G to a ring and show, under an equivalence relation we call weak isomorphism, that there are precisely six distinct classes of rings constructed using this method with additive group the elementary abelian p–group of odd order p2.
In this paper we begin with a short, direct proof that the Banach algebra B(l1) is not amenable. We continue by showing that various direct sums of matrix algebras are not amenable either, for example the direct sum of the finite dimensional algebras is no amenable for 1 ≤ p ≤ ∞, p ≠ 2. Our method of proof naturally involves free group algebras, (by which we mean certain subalgebras of B(X) for some space X with symmetric basis—not necessarily X = l2) and we introduce the notion of ‘relative amenability’ of these algebras.
Let R be an integral domain with quotient field K and let X be an indeterminate. A result of W. C. Waterhouse states that, if each quadratic polynomial f ∈ R[X] which factors into linear polynomials in K[X] also factors into linear polynomials in R[X], then every irreducible element in R is prime. In this note the rings which satisfy the hypothesis of this theorem are characterized, and compared to the rings for which each polynomial f ∈ R[X] which factors into two polynomials of positive degree in K[X] also factors into two polynomials of positive degree in R[X]. Relevant examples are furnished via the pullback construction.
Let R be a commutative Noetherian ring with nonzero identity and let M be a finitely generated R-module. In this paper, we prove that if an ideal I of R is generated by a u.s.d-sequence on M then the local cohomology module (M) is I-cofinite. Furthermore, for any system of ideals Φ of R, we study the cofiniteness problem in the context of general local cohomology modules.
Let M be a commutative cancellative atomic monoid. We consider the behaviour of the asymptotic length functions and on M. If M is finitely generated and reduced, then we present an algorithm for the computation of both and where x is a nonidentity element of M. We also explore the values that the functions and can attain when M is a Krull monoid with torsion divisor class group, and extend a well-known result of Zaks and Skula by showing how these values can be used to characterize when M is half-factorial.
Let R be a Noetherian local ring with maximal ideal m and lull ring of fractions Q. In this paper we consider a numerical function EHI: ℤ → ℤ, where I is an m-primary ideal of R, that coincides with the Hilbert function HI for positive values and that takes account of the fractional powers of I for negative values. We focus our attention on the one-dimensional case. Among other results we characterize one-dimensional Gorenstein local rings by means of the symmetry of EHR in Theorem 2.1, we show that the extended Hilbert function is not determined by the Hilbert function in Example 2.2. and we generalize to m-primary ideals the upper bound for e1(m) given by Matlis for the maximal ideal.
Given polynomials a and b over an integral domain R, their tensor product (denoted a ⊗ b) is a polynomial over R of degree deg(a) deg(b) whose roots comprise all products αβ, where α is a root of a, and β is a root of b. This paper considers basic properties of ⊗ including how to factor a ⊗ b into irreducibles factors, and the direct sum decomposition of the ⊗-product of fields.
It is shown that an integral domain R has the property that every pure submodule of a finite direct sum of ideals of R is a summand if and only if R is an h-local Prüfer domain; equivalently, (J + K:I) = (J:I) + (K:I) for all ideals I, J and K of R. These results are extended to submodules of the quotient field of an integral domain.
For i = 1,…, n let ai be a homogeneous polynomial of degree ri(>0) in the graded polynomial ring R[x1, …, xm], or R[x] for short, where R is a commutative ring with unity and x1, …, xm are indeterminates of degree 1. Let of degree - 1 be a formal inverse of xj and let U denote the graded R[x]-module In [2, §2] we introduced a graded complex of r-modules.