To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we prove that cyclic homology, topological cyclic homology, and algebraic $K$-theory satisfy a pro Mayer–Vietoris property with respect to abstract blow-up squares of varieties, in both zero and finite characteristic. This may be interpreted as the well-definedness of $K$-theory with compact support.
Let $H$ be a Krull monoid with finite class group $G$ such that every class contains a prime divisor (for example, a ring of integers in an algebraic number field or a holomorphy ring in an algebraic function field). The catenary degree $\mathsf{c}(H)$ of $H$ is the smallest integer $N$ with the following property: for each $a\in H$ and each pair of factorizations $z,z^{\prime }$ of $a$, there exist factorizations $z=z_{0},\dots ,z_{k}=z^{\prime }$ of $a$ such that, for each $i\in [1,k]$, $z_{i}$ arises from $z_{i-1}$ by replacing at most $N$ atoms from $z_{i-1}$ by at most $N$ new atoms. To exclude trivial cases, suppose that $|G|\geq 3$. Then the catenary degree depends only on the class group $G$ and we have $\mathsf{c}(H)\in [3,\mathsf{D}(G)]$, where $\mathsf{D}(G)$ denotes the Davenport constant of $G$. The cases when $\mathsf{c}(H)\in \{3,4,\mathsf{D}(G)\}$ have been previously characterized (see Theorem A). Based on a characterization of the catenary degree determined in the paper by Geroldinger et al. [‘The catenary degree of Krull monoids I’, J. Théor. Nombres Bordeaux23 (2011), 137–169], we determine the class groups satisfying $\mathsf{c}(H)=\mathsf{D}(G)-1$. Apart from the extremal cases mentioned, the precise value of $\mathsf{c}(H)$ is known for no further class groups.
Grothendieck duality theory assigns to essentially finite-type maps $f$ of noetherian schemes a pseudofunctor $f^{\times }$ right-adjoint to $\mathsf{R}f_{\ast }$, and a pseudofunctor $f^{!}$ agreeing with $f^{\times }$ when $f$ is proper, but equal to the usual inverse image $f^{\ast }$ when $f$ is étale. We define and study a canonical map from the first pseudofunctor to the second. This map behaves well with respect to flat base change, and is taken to an isomorphism by ‘compactly supported’ versions of standard derived functors. Concrete realizations are described, for instance for maps of affine schemes. Applications include proofs of reduction theorems for Hochschild homology and cohomology, and of a remarkable formula for the fundamental class of a flat map of affine schemes.
We give sufficient conditions for a Frobenius category to be equivalent to the category of Gorenstein projective modules over an Iwanaga–Gorenstein ring. We then apply this result to the Frobenius category of special Cohen–Macaulay modules over a rational surface singularity, where we show that the associated stable category is triangle equivalent to the singularity category of a certain discrepant partial resolution of the given rational singularity. In particular, this produces uncountably many Iwanaga–Gorenstein rings of finite Gorenstein projective type. We also apply our method to representation theory, obtaining Auslander–Solberg and Kong type results.
In order to develop the foundations of derived logarithmic geometry, we introduce a model category of logarithmic simplicial rings and a notion of derived log-étale maps, and use them to define derived log stacks.
We study the interplay between the cohomology of the Koszul complex of the partial derivatives of a homogeneous polynomial f and the pole order filtration P on the cohomology of the open set U = ℙn \ D, with D the hypersurface defined by f = 0. The relation is expressed by some spectral sequences. These sequences may, on the one hand, in many cases be used to determine the filtration P for curves and surfaces and, on the other hand, to obtain information about the syzygies involving the partial derivatives of the polynomial f. The case of a nodal hypersurface D is treated in terms of the defects of linear systems of hypersurfaces of various degrees passing through the nodes of D. When D is a nodal surface in ℙ3, we show that F2H3(U) ≠ P2H3(U) as soon as the degree of D is at least 4.
We study the space of linear difference equations with periodic coefficients and (anti)periodic solutions. We show that this space is isomorphic to the space of tame frieze patterns and closely related to the moduli space of configurations of points in the projective space. We define the notion of a combinatorial Gale transform, which is a duality between periodic difference equations of different orders. We describe periodic rational maps generalizing the classical Gauss map.
We study new families of curves that are suitable for efficiently parametrizing their moduli spaces. We explicitly construct such families for smooth plane quartics in order to determine unique representatives for the isomorphism classes of smooth plane quartics over finite fields. In this way, we can visualize the distributions of their traces of Frobenius. This leads to new observations on fluctuations with respect to the limiting symmetry imposed by the theory of Katz and Sarnak.
Let $R\subset F$ be an extension of real closed fields, and let ${\mathcal{S}}(M,R)$ be the ring of (continuous) semialgebraic functions on a semialgebraic set $M\subset R^{n}$. We prove that every $R$-homomorphism ${\it\varphi}:{\mathcal{S}}(M,R)\rightarrow F$ is essentially the evaluation homomorphism at a certain point $p\in F^{n}$ adjacent to the extended semialgebraic set $M_{F}$. This type of result is commonly known in real algebra as a substitution lemma. In the case when $M$ is locally closed, the results are neat, while the non-locally closed case requires a more subtle approach and some constructions (weak continuous extension theorem, appropriate immersion of semialgebraic sets) that have interest of their own. We consider the same problem for the ring of bounded (continuous) semialgebraic functions, getting results of a different nature.
We study the McKay correspondence for representations of the cyclic group of order $p$ in characteristic $p$. The main tool is the motivic integration generalized to quotient stacks associated to representations. Our version of the change of variables formula leads to an explicit computation of the stringy invariant of the quotient variety. A consequence is that a crepant resolution of the quotient variety (if any) has topological Euler characteristic $p$ as in the tame case. Also, we link a crepant resolution with a count of Artin–Schreier extensions of the power series field with respect to weights determined by ramification jumps and the representation.
Let $k$ be a field and $\mathbb{V}$ the affine threefold in $\mathbb{A}^4_k$ defined by $x^m y=F(x, z, t)$, $m \ge 2$. In this paper, we show that $\mathbb{V} \cong \mathbb{A}^3_k$ if and only if $f(z, t): = F(0, z, t)$ is a coordinate of $k[z, t]$. In particular, when $k$ is a field of positive characteristic and $f$ defines a non-trivial line in the affine plane $\mathbb{A}^2_k$ (we shall call such a $\mathbb{V}$ as an Asanuma threefold), then $\mathbb{V}\ncong \mathbb{A}^3_k$ although $\mathbb{V} \times \mathbb{A}^1_k \cong \mathbb{A}^4_k$, thereby providing a family of counter-examples to Zariski’s cancellation conjecture for the affine 3-space in positive characteristic. Our main result also proves a special case of the embedding conjecture of Abhyankar–Sathaye in arbitrary characteristic.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}R$ be a commutative ring, $I(R)$ be the set of all ideals of $R$ and $S$ be a subset of $I^*(R)=I(R)\setminus \{0\}$. We define a Cayley sum digraph of ideals of $R$, denoted by $\overrightarrow{\mathrm{Cay}}^+ (I(R),S)$, as a directed graph whose vertex set is the set $I(R)$ and, for every two distinct vertices $I$ and $J$, there is an arc from $I$ to $J$, denoted by $I\longrightarrow J$, whenever $I+K=J$, for some ideal $K $ in $S$. Also, the Cayley sum graph $ \mathrm{Cay}^+ (I(R), S)$ is an undirected graph whose vertex set is the set $I(R)$ and two distinct vertices $I$ and $J$ are adjacent whenever $I+K=J$ or $J+K=I$, for some ideal $K $ in $ S$. In this paper, we study some basic properties of the graphs $\overrightarrow{\mathrm{Cay}}^+ (I(R),S)$ and $ \mathrm{Cay}^+ (I(R), S)$ such as connectivity, girth and clique number. Moreover, we investigate the planarity, outerplanarity and ring graph of $ \mathrm{Cay}^+ (I(R), S)$ and also we provide some characterization for rings $R$ whose Cayley sum graphs have genus one.
We show how the Selberg $\Lambda ^2$-sieve can be used to obtain power saving error terms in a wide class of counting problems which are tackled using the geometry of numbers. Specifically, we give such an error term for the counting function of $S_5$-quintic fields.
Computational Galois theory, in particular the problem of computing the Galois group of a given polynomial, is a very old problem. Currently, the best algorithmic solution is Stauduhar’s method. Computationally, one of the key challenges in the application of Stauduhar’s method is to find, for a given pair of groups $H<G$, a $G$-relative $H$-invariant, that is a multivariate polynomial $F$ that is $H$-invariant, but not $G$-invariant. While generic, theoretical methods are known to find such $F$, in general they yield impractical answers. We give a general method for computing invariants of large degree which improves on previous known methods, as well as various special invariants that are derived from the structure of the groups. We then apply our new invariants to the task of computing the Galois groups of polynomials over the rational numbers, resulting in the first practical degree independent algorithm.
We consider the classical problem of finding the best uniform approximation by polynomials of $1/(x-a)^2,$ where $a>1$ is given, on the interval $[-\! 1,1]$. First, using symbolic computation tools we derive the explicit expressions of the polynomials of best approximation of low degrees and then give a parametric solution of the problem in terms of elliptic functions. Symbolic computation is invoked then once more to derive a recurrence relation for the coefficients of the polynomials of best uniform approximation based on a Pell-type equation satisfied by the solutions.
Groebner bases for the ideals determining mod $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}2$ cohomology of the real flag manifolds $F(1,1,n)$ and $F(1,2,n)$ are obtained. These are used to compute appropriate Stiefel–Whitney classes in order to establish some new nonembedding and nonimmersion results for the manifolds $F(1,2,n)$.
We prove that ${ \mathbb{Z} }_{{p}^{n} } $ and ${ \mathbb{Z} }_{p} [t] / ({t}^{n} )$ are polynomially equivalent if and only if $n\leq 2$ or ${p}^{n} = 8$. For the proof, employing Bernoulli numbers, we explicitly provide the polynomials which compute the carry-on part for the addition and multiplication in base $p$. As a corollary, we characterize finite rings of ${p}^{2} $ elements up to polynomial equivalence.
We develop some basic homological theory of hopfological algebra as defined by Khovanov [Hopfological algebra and categorification at a root of unity: the first steps, Preprint (2006), arXiv:math/0509083v2]. Several properties in hopfological algebra analogous to those of usual homological theory of DG algebras are obtained.
The purpose of this paper is twofold. We present first a vanishing theorem for families of linear series with base ideal being a fat points ideal. We then apply this result in order to give a partial proof of a conjecture raised by Bocci, Harbourne and Huneke concerning containment relations between ordinary and symbolic powers of planar point ideals.