To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We exhibit a real Banach space M such that C(K,M) is almost transitive if K is the Cantor set, the growth of the integers in its Stone–Čech compactification or the maximal ideal space of L∞. For finite K, the space C(K,M) = M|K| is even transitive.
Let L1(ω) be the weighted convolution algebra L1ω(ℝ+) on ℝ+ with weight ω. Grabiner recently proved that, for a nonzero, continuous homomorphism Φ:L1(ω1)→L1(ω2), the unique continuous extension to a homomorphism between the corresponding weighted measure algebras on ℝ+ is also continuous with respect to the weak-star topologies on these algebras. In this paper we investigate whether similar results hold for homomorphisms from L1(ω) into other commutative Banach algebras. In particular, we prove that for the disc algebra every nonzero homomorphism extends uniquely to a continuous homomorphism which is also continuous with respect to the weak-star topologies. Similarly, for a large class of Beurling algebras A+v on (including the algebra of absolutely convergent Taylor series on ) we prove that every nonzero homomorphism Φ:L1(ω)→A+v extends uniquely to a continuous homomorphism which is also continuous with respect to the weak-star topologies.
Let Bn denote the unit ball in ℂn, n≥1. Given an α>0, let ℱα(n) denote the class of functions defined for z∈Bn by integrating the kernel (1−〈z,w〉)−α against a complex Borel measure dμ(w), w∈Bn. The family ℱ0(n) corresponds to the logarithmic kernel log (1/(1−〈z,w〉)). Various properties of the spaces ℱα(n), α≥0, are obtained. In particular, pointwise multiplies for ℱα(n) are investigated.
We give derivative-free characterizations for bounded and compact generalized composition operators between (little) Zygmund type spaces. To obtain these results, we extend Pavlović’s corresponding result for bounded composition operators between analytic Lipschitz spaces.
For an increasing weight w in Bp (or equivalently in Ap), we find the best constants for the inequalities relating the standard norm in the weighted Lorentz space Λp(w) and the dual norm.
Given a metrizable locally convex-solid Riesz space of measurable functions we provide a procedure to construct a minimal Fréchet (function) lattice containing it, called its Fatou completion. As an application, we obtain that the Fatou completion of the space L1(ν) of integrable functions with respect to a Fréchet-space-valued measure ν is the space L1w(ν) of scalarly ν-integrable functions. Further consequences are also given.
For ε>0, let Σε={z∈ℂ:∣arg z∣<ε}. It has been proved (D. E. Marshall and W. Smith, Rev. Mat. Iberoamericana15 (1999), 93–116) that ∫ f−1(Σε)∣f(z)∣ dA(z)≃∫ 𝔻∣f(z)∣ dA(z) for every ε>0, uniformly for every univalent function f in the classical Bergman space A1 that fixes the origin. In this paper, we extend this result to those conformal maps on 𝔻 belonging to weighted Bergman–Orlicz classes such that f(0)=∣f′(0)∣−1=0.
Given a positive continuous function $\mu $ on the interval $0\,<\,t\,\le \,1$, we consider the space of so-called $\mu $-Bloch functions on the unit ball. If $\mu \left( t \right)\,=\,t$, these are the classical Bloch functions. For $\mu $, we define a metric $F_{z}^{\mu }\left( u \right)$ in terms of which we give a characterization of $\mu $-Bloch functions. Then, necessary and sufficient conditions are obtained in order that a composition operator be a bounded or compact operator between these generalized Bloch spaces. Our results extend those of Zhang and Xiao.
For an open subset Ω of the Euclidean space Rn, a measurable non-singular transformation T: Ω → Ω and a real-valued measurable function u on Rn, we study the weighted composition operator uCτ: f ↦ u · (f º T) on the Orlicz-Sobolev space W1·Ψ (Ω) consxsisting of those functions of the Orlicz space LΨ (Ω) whose distributional derivatives of the first order belong to LΨ (Ω). We also discuss a sufficient condition under which uCτ is compact.
Several rather general sufficient conditions for the extrapolation of the calculus of generalized Dirac operators from L2 to Lp are established. As consequences, we obtain some embedding theorems, quadratic estimates and Littlewood–Paley theorems in terms of this calculus in Lebesgue spaces. Some further generalizations, utilised in Part II devoted to applications, which include the Kato square root model, are discussed. We use resolvent approach and show the irrelevance of the semigroup one. Auxiliary results include a high order counterpart of the Hilbert identity, the derivation of new forms of ‘off-diagonal’ estimates, and the study of the structure of the model in Lebesgue spaces and its interpolation properties. In particular, some coercivity conditions for forms in Banach spaces are used as a substitution of the ellipticity ones. Attention is devoted to the relations between the properties of perturbed and unperturbed generalized Dirac operators. We do not use any stability results.
For a wide family of multivariate Hausdorff operators, the boundedness of an operator from this family i s proved on the real Hardy space. By this we extend and strengthen previous results due to Andersen and Móricz.
We prove the boundedness of Bergman-type operators on mixed norm spaces Lp·q (φ) for 0 < q < 1 and 0 < p ≤ ∞ of functions on the unit ball of ” with an application to Gleason's problem.
We give two charaterizations of the Möbius invariant QK spaces, one in terms of a double integral and the other in terms of the mean oscillation in the Bergman metric. Both charaterizations avoid the use of derivatives. Our results are new even in the case of Qp.
We study the normed spaces of (equivalence classes of) Banach space-valued functions that are Dobrakov, S* or McShane integrable with respect to a Banach space-valued measure, where the norm is the natural one given by the total semivariation of the indefinite integral. We show that simple functions are dense in these spaces. As a consequence we characterize when the corresponding indefinite integrals have norm relatively compact range. On the other hand, we also determine when these spaces are ultrabornological. Our results apply to conclude, for instance, that the spaces of Birkhoff (respectively McShane) integrable functions defined on a complete (respectively quasi-Radon) probability space, endowed with the Pettis norm, are ultrabornological.
The stability properties of the family ℳ of all intersections of closed balls are investigated in spaces C(K), where K is an arbitrary Hausdorff compact space. We prove that ℳ is stable under Minkowski addition if and only if K is extremally disconnected. In contrast to this, we show that ℳ is always ball stable in these spaces. Finally, we present a Banach space (indeed a subspace of C[0, 1]) which fails to be ball stable, answering an open question. Our results rest on the study of semicontinuous functions in Hausdorff compact spaces.
For 0 < p < ∞, we let pp−1 denote the space of those functions f that are analytic in the unit disc Δ = {z ∈ C: |z| < 1} and satisfy ∫Δ(1 – |z|)p−1|f′(z)|pdx dy < ∞ The spaces pp−1 are closely related to Hardy spaces. We have, p−1p ⊂ Hp, if 0 < p ≦ 2, and Hp ⊂ pp−1, if 2 ≦ p < ∞. In this paper we obtain a number of results about the Taylor coefficients of pp-1 -functions and sharp estimates on the growth of the integral means and the radial growth of these functions as well as information on their zero sets.
Let (X, ρ, μ)d, θ be a space of homogeneous type with d < 0 and θ ∈ (0, 1], b be a para-accretive function, ε ∈ (0, θ], ∣s∣ > ∈ and a0 ∈ (0, 1) be some constant depending on d, ∈ and s. The authors introduce the Besov space bBspq (X) with a0 > p ≧ ∞, and the Triebel-Lizorkin space bFspq (X) with a0 > p > ∞ and a0 > q ≧∞ by first establishing a Plancherel-Pôlya-type inequality. Moreover, the authors establish the frame and the Littlewood-Paley function characterizations of these spaces. Furthermore, the authors introduce the new Besov space b−1 Bs (X) and the Triebel-Lizorkin space b−1 Fspq (X). The relations among these spaces and the known Hardy-type spaces are presented. As applications, the authors also establish some real interpolation theorems, embedding theorems, T b theorems, and the lifting property by introducing some new Riesz operators of these spaces.
This paper presents two natural extensions of the topology of the space of scalar meromorphic functions M(Ω) described by Grosse-Erdmann in 1995 to spaces of vector-valued meromorphic functions M(ΩE). When E is locally complete and does not contain copies of ω we compare these topologies with the topology induced by the representation M (Ω, E) ≃ M(Ω)ε E recently obtained by Bonet, Maestre and the author.
It is shown that if E, F are Fréchet spaces, E ∈ (Hub), F ∈ (DN) then H(E, F) = Hub(E, F) holds. Using this result we prove that a Fréchet space E is nuclear and has the property (Hub) if and only if every entire function on E with values in a Fréchet space F ∈ (DN) can be represented in the exponential form. Moreover, it is also shown that if H(F*) has a LAERS and E ∈ (Hub) then H(E × F*) has a LAERS, where E, F are nuclear Fréchet spaces, F* has an absolute basis, and conversely, if H(E × F*) has a LAERS and F ∈ (DN) then E ∈ (Hub).
Composition operators Cτ between Orlicz spaces Lϕ (Ω, Σ, μ) generated by measurable and nonsingular transformations τ from Ω into itself are considered. We characterize boundedness and compactness of the composition operator between Orlicz spaces in terms of properties of the mapping τ, the function ϕ and the measure space (Ω, Σ, μ). These results generalize earlier results known for Lp-spaces.