We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Isoclinic subspaces have been studied for over a century. Quantum error correcting codes were recently shown to define a subclass of families of isoclinic subspaces. The Knill–Laflamme theorem is a seminal result in the theory of quantum error correction, a central topic in quantum information. We show there is a generalized version of the Knill–Laflamme result and conditions that applies to all families of isoclinic subspaces. In the case of quantum stabilizer codes, the expanded conditions are shown to capture logical operators. We apply the general conditions to give a new perspective on a classical subclass of isoclinic subspaces defined by the graphs of anti-commuting unitary operators. We show how the result applies to recently studied mutually unbiased quantum measurements (MUMs), and we give a new construction of such measurements motivated by the approach.
We prove that for a GNS-symmetric quantum Markov semigroup, the complete modified logarithmic Sobolev constant is bounded by the inverse of its complete positivity mixing time. For classical Markov semigroups, this gives a short proof that every sub-Laplacian of a Hörmander system on a compact manifold satisfies a modified log-Sobolev inequality uniformly for scalar and matrix-valued functions. For quantum Markov semigroups, we show that the complete modified logarithmic Sobolev constant is comparable to the spectral gap up to the logarithm of the dimension. Such estimates are asymptotically tight for a quantum birth-death process. Our results, along with the consequence of concentration inequalities, are applicable to GNS-symmetric semigroups on general von Neumann algebras.
Our primary result concerns the positivity of specific kernels constructed using the q-ultraspherical polynomials. In other words, it concerns a two-parameter family of bivariate, compactly supported distributions. Moreover, this family has a property that all its conditional moments are polynomials in the conditioning random variable. The significance of this result is evident for individuals working on distribution theory, orthogonal polynomials, q-series theory, and the so-called quantum polynomials. Therefore, it may have a limited number of interested researchers. That is why, we put our results into a broader context. We recall the theory of Hilbert–Schmidt operators and the idea of Lancaster expansions (LEs) of the bivariate distributions absolutely continuous with respect to the product of their marginal distributions. Applications of LE can be found in Mathematical Statistics or the creation of Markov processes with polynomial conditional moments (the most well-known of these processes is the famous Wiener process).
We consider a dilute fully spin-polarized Fermi gas at positive temperature in dimensions $d\in \{1,2,3\}$. We show that the pressure of the interacting gas is bounded from below by that of the free gas plus, to leading order, an explicit term of order $a^d\rho ^{2+2/d}$, where a is the p-wave scattering length of the repulsive interaction and $\rho $ is the particle density. The results are valid for a wide range of repulsive interactions, including that of a hard core, and uniform in temperatures at most of the order of the Fermi temperature. A central ingredient in the proof is a rigorous implementation of the fermionic cluster expansion of Gaudin, Gillespie and Ripka (Nucl. Phys. A, 176.2 (1971), pp. 237–260).
We define the co-spectral radius of inclusions ${\mathcal S}\leq {\mathcal R}$ of discrete, probability- measure-preserving equivalence relations as the sampling exponent of a generating random walk on the ambient relation. The co-spectral radius is analogous to the spectral radius for random walks on $G/H$ for inclusion $H\leq G$ of groups. For the proof, we develop a more general version of the 2–3 method we used in another work on the growth of unimodular random rooted trees. We use this method to show that the walk growth exists for an arbitrary unimodular random rooted graph of bounded degree. We also investigate how the co-spectral radius behaves for hyperfinite relations, and discuss new critical exponents for percolation that can be defined using the co-spectral radius.
Given two unital C*-algebras equipped with states and a positive operator in the enveloping von Neumann algebra of their minimal tensor product, we define three parameters that measure the capacity of the operator to align with a coupling of the two given states. Further, we establish a duality formula that shows the equality of two of the parameters for operators in the minimal tensor product of the relevant C*-algebras. In the context of abelian C*-algebras, our parameters are related to quantitative versions of Arveson's null set theorem and to dualities considered in the theory of optimal transport. On the other hand, restricting to matrix algebras we recover and generalize quantum versions of Strassen's theorem. We show that in the latter case our parameters can detect maximal entanglement and separability.
On all Bergman–Besov Hilbert spaces on the unit disk, we find self-adjoint weighted shift operators that are differential operators of half-order whose commutators are the identity, thereby obtaining uncertainty relations in these spaces. We also obtain joint average uncertainty relations for pairs of commuting tuples of operators on the same spaces defined on the unit ball. We further identify functions that yield equality in some uncertainty inequalities.
The principle of maximum entropy is a well-known approach to produce a model for data-generating distributions. In this approach, if partial knowledge about the distribution is available in terms of a set of information constraints, then the model that maximizes entropy under these constraints is used for the inference. In this paper, we propose a new three-parameter lifetime distribution using the maximum entropy principle under the constraints on the mean and a general index. We then present some statistical properties of the new distribution, including hazard rate function, quantile function, moments, characterization, and stochastic ordering. We use the maximum likelihood estimation technique to estimate the model parameters. A Monte Carlo study is carried out to evaluate the performance of the estimation method. In order to illustrate the usefulness of the proposed model, we fit the model to three real data sets and compare its relative performance with respect to the beta generalized Weibull family.
We establish an upper bound for the ground state energy per unit volume of a dilute Bose gas in the thermodynamic limit, capturing the correct second-order term, as predicted by the Lee–Huang–Yang formula. This result was first established in [20] by H.-T. Yau and J. Yin. Our proof, which applies to repulsive and compactly supported
$V \in L^3 (\mathbb {R}^3)$
, gives better rates and, in our opinion, is substantially simpler.
Cells and organisms follow aligned structures in their environment, a process that can generate persistent migration paths. Kinetic transport equations are a popular modelling tool for describing biological movements at the mesoscopic level, yet their formulations usually assume a constant turning rate. Here we relax this simplification, extending to include a turning rate that varies according to the anisotropy of a heterogeneous environment. We extend known methods of parabolic and hyperbolic scaling and apply the results to cell movement on micropatterned domains. We show that inclusion of orientation dependence in the turning rate can lead to persistence of motion in an otherwise fully symmetric environment and generate enhanced diffusion in structured domains.
We compute the deficiency spaces of operators of the form $H_A{\hat {\otimes }} I + I{\hat {\otimes }} H_B$, for symmetric $H_A$ and self-adjoint $H_B$. This enables us to construct self-adjoint extensions (if they exist) by means of von Neumann's theory. The structure of the deficiency spaces for this case was asserted already in Ibort et al. [Boundary dynamics driven entanglement, J. Phys. A: Math. Theor.47(38) (2014) 385301], but only proven under the restriction of $H_B$ having discrete, non-degenerate spectrum.
We determine the reflexivity index of some closed set lattices by constructing maps relative to irrational rotations. For example, various nests of closed balls and some topological spaces, such as even-dimensional spheres and a wedge of two circles, have reflexivity index 2. We also show that a connected double of spheres has reflexivity index at most 2.
In this note, we show that in a complete $\operatorname {\mathrm {CAT}}(0)$ space pointwise convergence of proximal mappings under a certain normalization condition implies Mosco convergence.
We consider the Cauchy problem for a general class of parabolic partial differential equations in the Euclidean space ℝN. We show that given a weighted Lp-space $L_w^p({\mathbb {R}}^N)$ with 1 ⩽ p < ∞ and a fast growing weight w, there is a Schauder basis $(e_n)_{n=1}^\infty$ in $L_w^p({\mathbb {R}}^N)$ with the following property: given an arbitrary positive integer m there exists nm > 0 such that, if the initial data f belongs to the closed linear span of en with n ⩾ nm, then the decay rate of the solution of the problem is at least t−m for large times t.
The result generalizes the recent study of the authors concerning the classical linear heat equation. We present variants of the result having different methods of proofs and also consider finite polynomial decay rates instead of unlimited m.
This work is devoted to a vast extension of Sanov’s theorem, in Laplace principle form, based on alternatives to the classical convex dual pair of relative entropy and cumulant generating functional. The abstract results give rise to a number of probabilistic limit theorems and asymptotics. For instance, widely applicable non-exponential large deviation upper bounds are derived for empirical distributions and averages of independent and identically distributed samples under minimal integrability assumptions, notably accommodating heavy-tailed distributions. Other interesting manifestations of the abstract results include new results on the rate of convergence of empirical measures in Wasserstein distance, uniform large deviation bounds, and variational problems involving optimal transport costs, as well as an application to error estimates for approximate solutions of stochastic optimization problems. The proofs build on the Dupuis–Ellis weak convergence approach to large deviations as well as the duality theory for convex risk measures.
The Douglas–Rachford method is a splitting method frequently employed for finding zeros of sums of maximally monotone operators. When the operators in question are normal cone operators, the iterated process may be used to solve feasibility problems of the following form: Find $x\in \bigcap _{k=1}^{N}S_{k}$. The success of the method in the context of closed, convex, nonempty sets $S_{1},\ldots ,S_{N}$ is well known and understood from a theoretical standpoint. However, its performance in the nonconvex context is less well understood, yet it is surprisingly impressive. This was particularly compelling to Jonathan M. Borwein who, intrigued by Elser, Rankenburg and Thibault’s success in applying the method to solving sudoku puzzles, began an investigation of his own. We survey the current body of literature on the subject, and we summarize its history. We especially commemorate Professor Borwein’s celebrated contributions to the area.
The geometric structure of the nonparametric statistical model of all positive densities connected by an open exponential arc and its intimate relation to Orlicz spaces give new insights to well-known financial objects which arise in exponential utility maximization problems.
We present refined and reversed inequalities for the weighted arithmetic mean–harmonic mean functional inequality. Our approach immediately yields the related operator versions in a simple and fast way. We also give some operator and functional inequalities for three or more arguments. As an application, we obtain a refined upper bound for the relative entropy involving functional arguments.
We present solutions to nonzero-sum games of optimal stopping for Brownian motion in [0, 1] absorbed at either 0 or 1. The approach used is based on the double partial superharmonic characterisation of the value functions derived in Attard (2015). In this setting the characterisation of the value functions has a transparent geometrical interpretation of 'pulling two ropes' above 'two obstacles' which must, however, be constrained to pass through certain regions. This is an extension of the analogous result derived by Peskir (2009), (2012) (semiharmonic characterisation) for the value function in zero-sum games of optimal stopping. To derive the value functions we transform the game into a free-boundary problem. The latter is then solved by making use of the double smooth fit principle which was also observed in Attard (2015). Martingale arguments based on the Itô–Tanaka formula will then be used to verify that the solution to the free-boundary problem coincides with the value functions of the game and this will establish the Nash equilibrium.
We introduce the Hurwitz-type spectral zeta functions for the quantum Rabi models, and give their meromorphic continuation to the whole complex plane with only one simple pole at $s=1$. As an application, we give the Weyl law for the quantum Rabi models. As a byproduct, we also give a rationality of Rabi–Bernoulli polynomials introduced in this paper.