To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An action of a group G on a set X is said to be quasi-n-transitive if the diagonal action of G on $X^n$ has only finitely many orbits. We show that branch groups, a special class of groups of automorphisms of rooted trees, cannot act quasi-2-transitively on infinite sets.
Let $G \leqslant \mathrm {Sym}(\Omega )$ be a finite transitive permutation group and recall that an element in G is a derangement if it has no fixed points on $\Omega $. Let $\Delta (G)$ be the set of derangements in G and define $\delta (G) = |\Delta (G)|/|G|$ and $\Delta (G)^2 = \{ xy \,:\, x,y \in \Delta (G)\}$. In recent years, there has been a focus on studying derangements in simple groups, leading to several remarkable results. For example, by combining a theorem of Fulman and Guralnick with recent work by Larsen, Shalev and Tiep, it follows that $\delta (G) \geqslant 0.016$ and $G = \Delta (G)^2$ for all sufficiently large simple transitive groups G. In this paper, we extend these results in several directions. For example, we prove that $\delta (G) \geqslant 89/325$ and $G = \Delta (G)^2$ for all finite simple primitive groups with soluble point stabilisers, without any order assumptions, and we show that the given lower bound on $\delta (G)$ is best possible. We also prove that every finite simple transitive group can be generated by two conjugate derangements, and we present several new results on derangements in arbitrary primitive permutation groups.
In their celebrated paper [CLR10], Caputo, Liggett and Richthammer proved Aldous’ conjecture and showed that for an arbitrary finite graph, the spectral gap of the interchange process is equal to the spectral gap of the underlying random walk. A crucial ingredient in the proof was the Octopus Inequality — a certain inequality of operators in the group ring $\mathbb{R}\left[{\mathrm{Sym}}_{n}\right]$ of the symmetric group. Here we generalise the Octopus Inequality and apply it to generalising the Caputo–Liggett–Richthammer Theorem to certain hypergraphs, proving some cases of a conjecture of Caputo.
Given a word $w(x_{1},\ldots,x_{r})$, i.e. an element in the free group on r elements, and an integer $d\geq1$, we study the characteristic polynomial of the random matrix $w(X_{1},\ldots,X_{r})$, where $X_{i}$ are Haar-random independent $d\times d$ unitary matrices. If $c_{m}(X)$ denotes the mth coefficient of the characteristic polynomial of X, our main theorem implies that there is a positive constant $\epsilon(w)$, depending only on w, such that
for every d and every $1\leq m\leq d$. Our main computational tool is the Weingarten calculus, which allows us to express integrals on unitary groups such as the expectation above, as certain sums on symmetric groups. We exploit a hidden symmetry to find cancellations in the sum expressing $\mathbb{E}(c_{m}(w))$. These cancellations, coming from averaging a Weingarten function over cosets, follow from Schur’s orthogonality relations.
The minimal faithful permutation degree $\mu (G)$ of a finite group G is the least integer n such that G is isomorphic to a subgroup of the symmetric group $S_n$. If G has a normal subgroup N such that $\mu (G/N)> \mu (G)$, then G is exceptional. We prove that the proportion of exceptional groups of order $p^6$ for primes $p \geq 5$ is asymptotically zero. We identify $(11p+107)/2$ such groups and conjecture that there are no others.
Let C be a curve defined over a number field K and write g for the genus of C and J for the Jacobian of C. Let $n \ge 2$. We say that an algebraic point $P \in C(\overline {K})$ has degree n if the extension $K(P)/K$ has degree n. By the Galois group of P we mean the Galois group of the Galois closure of $K(P)/K$ which we identify as a transitive subgroup of $S_n$. We say that P is primitive if its Galois group is primitive as a subgroup of $S_n$. We prove the following ‘single source’ theorem for primitive points. Suppose $g>(n-1)^2$ if $n \ge 3$ and $g \ge 3$ if $n=2$. Suppose that either J is simple or that $J(K)$ is finite. Suppose C has infinitely many primitive degree n points. Then there is a degree n morphism $\varphi : C \rightarrow \mathbb {P}^1$ such that all but finitely many primitive degree n points correspond to fibres $\varphi ^{-1}(\alpha )$ with $\alpha \in \mathbb {P}^1(K)$.
We prove, moreover, under the same hypotheses, that if C has infinitely many degree n points with Galois group $S_n$ or $A_n$, then C has only finitely many degree n points of any other primitive Galois group.
For positive integers k and n, the shuffle group $G_{k,kn}$ is generated by the $k!$ permutations of a deck of $kn$ cards performed by cutting the deck into k piles with n cards in each pile, and then perfectly interleaving these cards following a certain permutation of the k piles. For $k=2$, the shuffle group $G_{2,2n}$ was determined by Diaconis, Graham and Kantor in 1983. The Shuffle Group Conjecture states that, for general k, the shuffle group $G_{k,kn}$ contains $\mathrm {A}_{kn}$ whenever $k\notin \{2,4\}$ and n is not a power of k. In particular, the conjecture in the case $k=3$ was posed by Medvedoff and Morrison in 1987. The only values of k for which the Shuffle Group Conjecture has been confirmed so far are powers of $2$, due to recent work of Amarra, Morgan and Praeger based on Classification of Finite Simple Groups. In this paper, we confirm the Shuffle Group Conjecture for all cases using results on $2$-transitive groups and elements of large fixed point ratio in primitive groups.
Let $X=GC$ be a group, where C is a cyclic group and G is either a generalized quaternion group or a dihedral group such that $C\cap G=1$. In this paper, X is characterized and, moreover, a complete classification for $X$ is given, provided that G is a generalized quaternion group and C is core-free.
We study covering numbers of subsets of the symmetric group $S_n$ that exhibit closure under conjugation, known as normal sets. We show that for any $\epsilon>0$, there exists $n_0$ such that if $n>n_0$ and A is a normal subset of the symmetric group $S_n$ of density $\ge e^{-n^{2/5 - \epsilon }}$, then $A^2 \supseteq A_n$. This improves upon a seminal result of Larsen and Shalev (Inventiones Math., 2008), with our $2/5$ in the double exponent replacing their $1/4$.
Our proof strategy combines two types of techniques. The first is ‘traditional’ techniques rooted in character bounds and asymptotics for the Witten zeta function, drawing from the foundational works of Liebeck–Shalev, Larsen–Shalev, and more recently, Larsen–Tiep. The second is a sharp hypercontractivity theorem in the symmetric group, which was recently obtained by Keevash and Lifshitz. This synthesis of algebraic and analytic methodologies not only allows us to attain our improved bounds but also provides new insights into the behavior of general independent sets in normal Cayley graphs over symmetric groups.
We show that if one of various cycle types occurs in the permutation action of a finite group on the cosets of a given subgroup, then every almost conjugate subgroup is conjugate. As a number theoretic application, corresponding decomposition types of primes effect that a number field is determined by the Dedekind zeta function. As a geometric application, coverings of Riemannian manifolds with certain geodesic lifting behaviours must be isometric.
We find an upper bound for the number of groups of order n up to isomorphism in the variety ${\mathfrak {S}}={\mathfrak {A}_p}{\mathfrak {A}_q}{\mathfrak {A}_r}$, where p, q and r are distinct primes. We also find a bound on the orders and on the number of conjugacy classes of subgroups that are maximal amongst the subgroups of the general linear group that are also in the variety $\mathfrak {A}_q\mathfrak {A}_r$.
We construct the first examples of infinite sharply 2-transitive groups which are finitely generated. Moreover, we construct such a group that has Kazhdan property (T), is simple, has exactly four conjugacy classes and we show that this number is as small as possible.
The hypercontractive inequality is a fundamental result in analysis, with many applications throughout discrete mathematics, theoretical computer science, combinatorics and more. So far, variants of this inequality have been proved mainly for product spaces, which raises the question of whether analogous results hold over non-product domains.
We consider the symmetric group, $S_n$, one of the most basic non-product domains, and establish hypercontractive inequalities on it. Our inequalities are most effective for the class of global functions on $S_n$, which are functions whose $2$-norm remains small when restricting $O(1)$ coordinates of the input, and assert that low-degree, global functions have small q-norms, for $q>2$.
As applications, we show the following:
1. An analog of the level-d inequality on the hypercube, asserting that the mass of a global function on low degrees is very small. We also show how to use this inequality to bound the size of global, product-free sets in the alternating group $A_n$.
2. Isoperimetric inequalities on the transposition Cayley graph of $S_n$ for global functions that are analogous to the KKL theorem and to the small-set expansion property in the Boolean hypercube.
3. Hypercontractive inequalities on the multi-slice and stability versions of the Kruskal–Katona Theorem in some regimes of parameters.
Let G be a permutation group on a finite set $\Omega $. The base size of G is the minimal size of a subset of $\Omega $ with trivial pointwise stabiliser in G. In this paper, we extend earlier work of Fawcett by determining the precise base size of every finite primitive permutation group of diagonal type. In particular, this is the first family of primitive groups arising in the O’Nan–Scott theorem for which the exact base size has been computed in all cases. Our methods also allow us to determine all the primitive groups of diagonal type with a unique regular suborbit.
We solve a fundamental question posed in Frohardt’s 1988 paper [6] on finite $2$-groups with Kantor familes, by showing that finite groups K with a Kantor family $(\mathcal {F},\mathcal {F}^*)$ having distinct members $A, B \in \mathcal {F}$ such that $A^* \cap B^*$ is a central subgroup of K and the quotient $K/(A^* \cap B^*)$ is abelian cannot exist if the center of K has exponent $4$ and the members of $\mathcal {F}$ are elementary abelian. Then we give a short geometrical proof of a recent result of Ott which says that finite skew translation quadrangles of even order $(t,t)$ (where t is not a square) are always translation generalized quadrangles. This is a consequence of a complete classification of finite cyclic skew translation quadrangles of order $(t,t)$ that we carry out in the present paper.
We give a lattice theoretical interpretation of generalized deep holes of the Leech lattice VOA $V_\Lambda $. We show that a generalized deep hole defines a ‘true’ automorphism invariant deep hole of the Leech lattice. We also show that there is a correspondence between the set of isomorphism classes of holomorphic VOA V of central charge $24$ having non-abelian $V_1$ and the set of equivalence classes of pairs $(\tau , \tilde {\beta })$ satisfying certain conditions, where $\tau \in Co.0$ and $\tilde {\beta }$ is a $\tau $-invariant deep hole of squared length $2$. It provides a new combinatorial approach towards the classification of holomorphic VOAs of central charge $24$. In particular, we give an explanation for an observation of G. Höhn, which relates the weight one Lie algebras of holomorphic VOAs of central charge $24$ to certain codewords associated with the glue codes of Niemeier lattices.
A first-order structure $\mathfrak {A}$ is called monadically stable iff every expansion of $\mathfrak {A}$ by unary predicates is stable. In this paper we give a classification of the class $\mathcal {M}$ of $\omega $-categorical monadically stable structure in terms of their automorphism groups. We prove in turn that $\mathcal {M}$ is the smallest class of structures which contains the one-element pure set, is closed under isomorphisms, and is closed under taking finite disjoint unions, infinite copies, and finite index first-order reducts. Using our classification we show that every structure in $\mathcal {M}$ is first-order interdefinable with a finitely bounded homogeneous structure. We also prove that every structure in $\mathcal {M}$ has finitely many reducts up to interdefinability, thereby confirming Thomas’ conjecture for the class $\mathcal {M}$.