To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For integers $p,b\geq 2$, let $D=\{0,1,\ldots ,b-1\}$ be a set of consecutive digits. It is known that the Cantor measure $\unicode[STIX]{x1D707}_{pb,D}$ generated by the iterated function system $\{(pb)^{-1}(x+d)\}_{x\in \mathbb{R},d\in D}$ is a spectral measure with spectrum
where $S=pD$. We give conditions on $\unicode[STIX]{x1D70F}\in \mathbb{Z}$ under which the scaling set $\unicode[STIX]{x1D70F}\unicode[STIX]{x1D6EC}(pb,S)$ is also a spectrum of $\unicode[STIX]{x1D707}_{pb,D}$. These investigations link number theory and spectral measures.
The aim of the article is to provide a characterization of the Haagerup property for locally compact, second countable groups in terms of actions on $\unicode[STIX]{x1D70E}$-finite measure spaces. It is inspired by the very first definition of amenability, namely the existence of an invariant mean on the algebra of essentially bounded, measurable functions on the group.
For Laplacians defined by measures on a bounded domain in ℝn, we prove analogues of the classical eigenvalue estimates for the standard Laplacian: lower bound of sums of eigenvalues by Li and Yau, and gaps of consecutive eigenvalues by Payne, Pólya and Weinberger. This work is motivated by the study of spectral gaps for Laplacians on fractals.
Fix an alphabet $A=\{0,1,\ldots ,M\}$ with $M\in \mathbb{N}$. The univoque set $\mathscr{U}$ of bases $q\in (1,M+1)$ in which the number $1$ has a unique expansion over the alphabet $A$ has been well studied. It has Lebesgue measure zero but Hausdorff dimension one. This paper describes how the points in the set $\mathscr{U}$ are distributed over the interval $(1,M+1)$ by determining the limit
for all $q\in (1,M+1)$. We show in particular that $f(q)>0$ if and only if $q\in \overline{\mathscr{U}}\backslash \mathscr{C}$, where $\mathscr{C}$ is an uncountable set of Hausdorff dimension zero, and $f$ is continuous at those (and only those) points where it vanishes. Furthermore, we introduce a countable family of pairwise disjoint subsets of $\mathscr{U}$ called relative bifurcation sets, and use them to give an explicit expression for the Hausdorff dimension of the intersection of $\mathscr{U}$ with any interval, answering a question of Kalle et al [On the bifurcation set of unique expansions. Acta Arith. 188 (2019), 367–399]. Finally, the methods developed in this paper are used to give a complete answer to a question of the first author [On univoque and strongly univoque sets. Adv. Math.308 (2017), 575–598] on strongly univoque sets.
We introduce inner amenability for discrete probability-measure-preserving (p.m.p.) groupoids and investigate its basic properties, examples, and the connection with central sequences in the full group of the groupoid or central sequences in the von Neumann algebra associated with the groupoid. Among other things, we show that every free ergodic p.m.p. compact action of an inner amenable group gives rise to an inner amenable orbit equivalence relation. We also obtain an analogous result for compact extensions of equivalence relations that either are stable or have a nontrivial central sequence in their full group.
Mauldin [15] proved that there is an analytic set, which cannot be represented by $B\cup X$ for some Borel set B and a subset X of a $\boldsymbol{\Sigma }^0_2$-null set, answering a question by Johnson [10]. We reprove Mauldin’s answer by a recursion-theoretical method. We also give a characterization of the Borel generated $\sigma $-ideals having approximation property under the assumption that every real is constructible, answering Mauldin’s question raised in [15].
In this paper, we consider a notion of nonmeasurablity with respect to Marczewski and Marczewski-like tree ideals $s_0$, $m_0$, $l_0$, $cl_0$, $h_0,$ and $ch_0$. We show that there exists a subset of the Baire space $\omega ^\omega ,$ which is s-, l-, and m-nonmeasurable that forms a dominating m.e.d. family. We investigate a notion of ${\mathbb {T}}$-Bernstein sets—sets which intersect but do not contain any body of any tree from a given family of trees ${\mathbb {T}}$. We also obtain a result on ${\mathcal {I}}$-Luzin sets, namely, we prove that if ${\mathfrak {c}}$ is a regular cardinal, then the algebraic sum (considered on the real line ${\mathbb {R}}$) of a generalized Luzin set and a generalized Sierpiński set belongs to $s_0, m_0$, $l_0,$ and $cl_0$.
An abstract system of congruences describes a way of partitioning a space into finitely many pieces satisfying certain congruence relations. Examples of abstract systems of congruences include paradoxical decompositions and $n$-divisibility of actions. We consider the general question of when there are realizations of abstract systems of congruences satisfying various measurability constraints. We completely characterize which abstract systems of congruences can be realized by nonmeager Baire measurable pieces of the sphere under the action of rotations on the $2$-sphere. This answers a question by Wagon. We also construct Borel realizations of abstract systems of congruences for the action of $\mathsf{PSL}_{2}(\mathbb{Z})$ on $\mathsf{P}^{1}(\mathbb{R})$. The combinatorial underpinnings of our proof are certain types of decomposition of Borel graphs into paths. We also use these decompositions to obtain some results about measurable unfriendly colorings.
For an irrational number $x\in [0,1)$, let $x=[a_{1}(x),a_{2}(x),\ldots ]$ be its continued fraction expansion with partial quotients $\{a_{n}(x):n\geq 1\}$. Given $\unicode[STIX]{x1D6E9}\in \mathbb{N}$, for $n\geq 1$, the $n$th longest block function of $x$ with respect to $\unicode[STIX]{x1D6E9}$ is defined by $L_{n}(x,\unicode[STIX]{x1D6E9})=\max \{k\geq 1:a_{j+1}(x)=\cdots =a_{j+k}(x)=\unicode[STIX]{x1D6E9}~\text{for some}~j~\text{with}~0\leq j\leq n-k\}$, which represents the length of the longest consecutive sequence whose elements are all $\unicode[STIX]{x1D6E9}$ from the first $n$ partial quotients of $x$. We consider the growth rate of $L_{n}(x,\unicode[STIX]{x1D6E9})$ as $n\rightarrow \infty$ and calculate the Hausdorff dimensions of the level sets and exceptional sets arising from the longest block function.
We establish various new results on a problem proposed by Mahler [Some suggestions for further research. Bull. Aust. Math. Soc.29 (1984), 101–108] concerning rational approximation to fractal sets by rational numbers inside and outside the set in question. Some of them provide a natural continuation and improvement of recent results of Broderick, Fishman and Reich, and Fishman and Simmons. A key feature is that many of our new results apply to more general, multi-dimensional fractal sets and require only mild assumptions on the iterated function system. Moreover, we provide a non-trivial lower bound for the distance of a rational number $p/q$ outside the Cantor middle-third set $C$ to the set $C$, in terms of the denominator $q$. We further discuss patterns of rational numbers in fractal sets. We highlight two of them: firstly, an upper bound for the number of rational (algebraic) numbers in a fractal set up to a given height (and degree) for a wide class of fractal sets; and secondly, we find properties of the denominator structure of rational points in ‘missing-digit’ Cantor sets, generalizing claims of Nagy and Bloshchitsyn.
We generalize current known distribution results on Shanks–Rényi prime number races to the case where arbitrarily many residue classes are involved. Our method handles both the classical case that goes back to Chebyshev and function field analogues developed in the recent years. More precisely, let $\unicode[STIX]{x1D70B}(x;q,a)$ be the number of primes up to $x$ that are congruent to $a$ modulo $q$. For a fixed integer $q$ and distinct invertible congruence classes $a_{0},a_{1},\ldots ,a_{D}$, assuming the generalized Riemann Hypothesis and a weak version of the linear independence hypothesis, we show that the set of real $x$ for which the inequalities $\unicode[STIX]{x1D70B}(x;q,a_{0})>\unicode[STIX]{x1D70B}(x;q,a_{1})>\cdots >\unicode[STIX]{x1D70B}(x;q,a_{D})$ are simultaneously satisfied admits a logarithmic density.
Let $\{M_{n}\}_{n=1}^{\infty }$ be a sequence of expanding matrices with $M_{n}=\operatorname{diag}(p_{n},q_{n})$, and let $\{{\mathcal{D}}_{n}\}_{n=1}^{\infty }$ be a sequence of digit sets with ${\mathcal{D}}_{n}=\{(0,0)^{t},(a_{n},0)^{t},(0,b_{n})^{t},\pm (a_{n},b_{n})^{t}\}$, where $p_{n}$, $q_{n}$, $a_{n}$ and $b_{n}$ are positive integers for all $n\geqslant 1$. If $\sup _{n\geqslant 1}\{\frac{a_{n}}{p_{n}},\frac{b_{n}}{q_{n}}\}<\infty$, then the infinite convolution $\unicode[STIX]{x1D707}_{\{M_{n}\},\{{\mathcal{D}}_{n}\}}=\unicode[STIX]{x1D6FF}_{M_{1}^{-1}{\mathcal{D}}_{1}}\ast \unicode[STIX]{x1D6FF}_{(M_{1}M_{2})^{-1}{\mathcal{D}}_{2}}\ast \cdots \,$ is a Borel probability measure (Cantor–Dust–Moran measure). In this paper, we investigate whenever there exists a discrete set $\unicode[STIX]{x1D6EC}$ such that $\{e^{2\unicode[STIX]{x1D70B}i\langle \unicode[STIX]{x1D706},x\rangle }:\unicode[STIX]{x1D706}\in \unicode[STIX]{x1D6EC}\}$ is an orthonormal basis for $L^{2}(\unicode[STIX]{x1D707}_{\{M_{n}\},\{{\mathcal{D}}_{n}\}})$.
We provide complete characterisations for the compactness of weighted composition operators between two distinct $L^{p}$-spaces, where $1\leq p\leq \infty$. As a corollary, when the underlying measure space is nonatomic, the only compact weighted composition map between $L^{p}$-spaces is the zero operator.
where $p$ is a polynomial with at least one irrational coefficient on non-constant terms, $d$ is any real number and, for $a\in [0,\infty )$, $a~\text{mod}~1$ is the fractional part of $a$. With the help of a method recently introduced by Wu, we show that the closure of $A$ must have full Hausdorff dimension.
Let $\unicode[STIX]{x1D6FD}>1$ be a real number and define the $\unicode[STIX]{x1D6FD}$-transformation on $[0,1]$ by $T_{\unicode[STIX]{x1D6FD}}:x\mapsto \unicode[STIX]{x1D6FD}x\hspace{0.6em}({\rm mod}\hspace{0.2em}1)$. Let $f:[0,1]\rightarrow [0,1]$ and $g:[0,1]\rightarrow [0,1]$ be two Lipschitz functions. The main result of the paper is the determination of the Hausdorff dimension of the set
where $\unicode[STIX]{x1D70F}_{1}$, $\unicode[STIX]{x1D70F}_{2}$ are two positive continuous functions with $\unicode[STIX]{x1D70F}_{1}(x)\leq \unicode[STIX]{x1D70F}_{2}(y)$ for all $x,y\in [0,1]$.
The Assouad dimension of a metric space determines its extremal scaling properties. The derived notion of the Assouad spectrum fixes relative scales by a scaling function to obtain interpolation behaviour between the quasi-Assouad and the box-counting dimensions. While the quasi-Assouad and Assouad dimensions often coincide, they generally differ in random constructions. In this paper we consider a generalised Assouad spectrum that interpolates between the quasi-Assouad and the Assouad dimension. For common models of random fractal sets, we obtain a dichotomy of its behaviour by finding a threshold function where the quasi-Assouad behaviour transitions to the Assouad dimension. This threshold can be considered a phase transition, and we compute the threshold for the Gromov boundary of Galton–Watson trees and one-variable random self-similar and self-affine constructions. We describe how the stochastically self-similar model can be derived from the Galton–Watson tree result.
Let $({\mathcal{X}},d,\unicode[STIX]{x1D707})$ be a metric measure space satisfying the geometrically doubling condition and the upper doubling condition. In this paper, the authors establish the John-Nirenberg inequality for the regularized BLO space $\widetilde{\operatorname{RBLO}}(\unicode[STIX]{x1D707})$.
We study dynamical systems $(X,G,m)$ with a compact metric space $X$, a locally compact, $\unicode[STIX]{x1D70E}$-compact, abelian group $G$ and an invariant Borel probability measure $m$ on $X$. We show that such a system has a discrete spectrum if and only if a certain space average over the metric is a Bohr almost periodic function. In this way, this average over the metric plays, for general dynamical systems, a similar role to that of the autocorrelation measure in the study of aperiodic order for special dynamical systems based on point sets.
In analogy with the lower Assouad dimensions of a set, we study the lower Assouad dimensions of a measure. As with the upper Assouad dimensions, the lower Assouad dimensions of a measure provide information about the extreme local behaviour of the measure. We study the connection with other dimensions and with regularity properties. In particular, the quasi-lower Assouad dimension is dominated by the infimum of the measure’s lower local dimensions. Although strict inequality is possible in general, equality holds for the class of self-similar measures of finite type. This class includes all self-similar, equicontractive measures satisfying the open set condition, as well as certain “overlapping” self-similar measures, such as Bernoulli convolutions with contraction factors that are inverses of Pisot numbers.
We give lower bounds for the lower Assouad dimension for measures arising from a Moran construction, prove that self-affine measures are uniformly perfect and have positive lower Assouad dimension, prove that the Assouad spectrum of a measure converges to its quasi-Assouad dimension and show that coincidence of the upper and lower Assouad dimension of a measure does not imply that the measure is s-regular.
One of the approaches to the Riemann Hypothesis is the Nyman–Beurling criterion. Cotangent sums play a significant role in this criterion. Here we investigate the values of these cotangent sums for various shifts of the argument.