We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A partition $\lambda $ of n is said to be nearly self-conjugate if the Ferrers graph of $\lambda $ and its transpose have exactly $n-1$ cells in common. The generating function of the number of such partitions was first conjectured by Campbell and recently confirmed by Campbell and Chern (‘Nearly self-conjugate integer partitions’, submitted for publication). We present a simple and direct analytic proof and a combinatorial proof of an equivalent statement.
Let a, b, c be fixed coprime positive integers with $\min \{ a,b,c \}>1$. Let $N(a,b,c)$ denote the number of positive integer solutions $(x,y,z)$ of the equation $a^x + b^y = c^z$. We show that if $(a,b,c)$ is a triple of distinct primes for which $N(a,b,c)>1$ and $(a,b,c)$ is not one of the six known such triples, then $c>10^{18}$, and there are exactly two solutions $(x_1, y_1, z_1)$, $(x_2, y_2, z_2)$ with $2 \mid x_1$, $2 \mid y_1$, $z_1=1$, $2 \nmid y_2$, $z_2>1$, and, taking $a<b$, we must have $a=2$, $b \equiv 1 \bmod 12$, $c \equiv 5\, \mod 12$, with $(a,b,c)$ satisfying further strong restrictions. These results support a conjecture put forward by Scott and Styer [‘Number of solutions to $a^x + b^y = c^z$’, Publ. Math. Debrecen88 (2016), 131–138].
We study Ohno–Zagier type relations for multiple t-values and multiple t-star values. We represent the generating function of sums of multiple t-(star) values with fixed weight, depth and height in terms of the generalised hypergeometric function
$\,_3F_2$
. As applications, we get a formula for the generating function of sums of multiple t-(star) values of maximal height and a weighted sum formula for sums of multiple t-(star) values with fixed weight and depth.
In order to study integral points of bounded log-anticanonical height on weak del Pezzo surfaces, we classify weak del Pezzo pairs. As a representative example, we consider a quartic del Pezzo surface of singularity type $\mathbf {A}_1+\mathbf {A}_3$ and prove an analogue of Manin’s conjecture for integral points with respect to its singularities and its lines.
We prove several finite product-sum identities involving the q-binomial coefficient, one of which is used to prove an amazing identity of Gauss. We then use this identity to evaluate certain quadratic Gauss sums and, together with known properties of quadratic Gauss sums, we prove the quadratic reciprocity law for the Jacobi symbol. We end our article with a new proof of Jenkins’ lemma, a lemma analogous to Gauss’ lemma. This article aims to show that Gauss’ amazing identity and the properties of quadratic Gauss sums are sufficient to establish the quadratic reciprocity law for the Jacobi symbol.
For each prime p, we show that there exist geometrically simple abelian varieties A over
${\mathbb Q}$
with . Specifically, for any prime
$N\equiv 1 \ \pmod p$
, let
$A_f$
be an optimal quotient of
$J_0(N)$
with a rational point P of order p, and let
$B = A_f/\langle P \rangle $
. Then the number of positive integers
$d \leq X$
with is
$ \gg X/\log X$
, where
$\widehat B_d$
is the dual of the dth quadratic twist of B. We prove this more generally for abelian varieties of
$\operatorname {\mathrm {GL}}_2$
-type with a p-isogeny satisfying a mild technical condition. In the special case of elliptic curves, we give stronger results, including many examples where for an explicit positive proportion of integers d.
We construct a geometrico-symbolic version of the natural extension of the random $\beta $-transformation introduced by Dajani and Kraaikamp [Random $\beta $-expansions. Ergod. Th. & Dynam. Sys.23(2) (2003) 461–479]. This construction provides a new proof of the existence of a unique absolutely continuous invariant probability measure for the random $\beta $-transformation, and an expression for its density. We then prove that this natural extension is a Bernoulli automorphism, generalizing to the random case the result of Smorodinsky [$\beta $-automorphisms are Bernoulli shifts. Acta Math. Acad. Sci. Hungar.24 (1973), 273–278] about the greedy transformation.
We study approximations for the Lévy area of Brownian motion which are based on the Fourier series expansion and a polynomial expansion of the associated Brownian bridge. Comparing the asymptotic convergence rates of the Lévy area approximations, we see that the approximation resulting from the polynomial expansion of the Brownian bridge is more accurate than the Kloeden–Platen–Wright approximation, whilst still only using independent normal random vectors. We then link the asymptotic convergence rates of these approximations to the limiting fluctuations for the corresponding series expansions of the Brownian bridge. Moreover, and of interest in its own right, the analysis we use to identify the fluctuation processes for the Karhunen–Loève and Fourier series expansions of the Brownian bridge is extended to give a stand-alone derivation of the values of the Riemann zeta function at even positive integers.
Celebrated theorems of Roth and of Matoušek and Spencer together show that the discrepancy of arithmetic progressions in the first $n$ positive integers is $\Theta (n^{1/4})$. We study the analogous problem in the $\mathbb {Z}_n$ setting. We asymptotically determine the logarithm of the discrepancy of arithmetic progressions in $\mathbb {Z}_n$ for all positive integer $n$. We further determine up to a constant factor the discrepancy of arithmetic progressions in $\mathbb {Z}_n$ for many $n$. For example, if $n=p^k$ is a prime power, then the discrepancy of arithmetic progressions in $\mathbb {Z}_n$ is $\Theta (n^{1/3+r_k/(6k)})$, where $r_k \in \{0,1,2\}$ is the remainder when $k$ is divided by $3$. This solves a problem of Hebbinghaus and Srivastav.
We prove new results on the distribution of rational points on ramified covers of abelian varieties over finitely generated fields $k$ of characteristic zero. For example, given a ramified cover $\pi : X \to A$, where $A$ is an abelian variety over $k$ with a dense set of $k$-rational points, we prove that there is a finite-index coset $C \subset A(k)$ such that $\pi (X(k))$ is disjoint from $C$. Our results do not seem to be in the range of other methods available at present; they confirm predictions coming from Lang's conjectures on rational points, and also go in the direction of an issue raised by Serre regarding possible applications to the inverse Galois problem. Finally, the conclusions of our work may be seen as a sharp version of Hilbert's irreducibility theorem for abelian varieties.
Let A be an abelian scheme of dimension at least four over a
$\mathbb {Z}$
-finitely generated integral domain R of characteristic zero, and let L be an ample line bundle on A. We prove that the set of smooth hypersurfaces D in A representing L is finite by showing that the moduli stack of such hypersurfaces has only finitely many R-points. We accomplish this by using level structures to interpolate finiteness results between this moduli stack and the stack of canonically polarized varieties.
For a fixed integer h, the standard orthogonality relations for Ramanujan sums $c_r(n)$ give an asymptotic formula for the shifted convolution $\sum _{n\le N} c_q(n)c_r(n+h)$. We prove a generalised formula for affine convolutions $\sum _{n\le N} c_q(n)c_r(kn+h)$. This allows us to study affine convolutions $\sum _{n\le N} f(n)g(kn+h)$ of arithmetical functions $f,g$ admitting a suitable Ramanujan–Fourier expansion. As an application, we give a heuristic justification of the Hardy–Littlewood conjectural asymptotic formula for counting Sophie Germain primes.
We prove finiteness results for sets of varieties over number fields with good reduction outside a given finite set of places using cyclic covers. We obtain a version of the Shafarevich conjecture for weighted projective surfaces, double covers of abelian varieties and reduce the Shafarevich conjecture for hypersurfaces to the case of hypersurfaces of high dimension. These are special cases of a general setup for integral points on moduli stacks of cyclic covers, and our arithmetic results are achieved via a version of the Chevalley–Weil theorem for stacks.
We improve to nearly optimal the known asymptotic and explicit bounds for the number of
$\mathbb {F}_q$
-rational points on a geometrically irreducible hypersurface over a (large) finite field. The proof involves a Bertini-type probabilistic combinatorial technique. Namely, we slice the given hypersurface with a random plane.
We show that for a Salem number $\beta $ of degree d, there exists a positive constant $c(d)$ where $\beta ^m$ is a Parry number for integers m of natural density $\ge c(d)$. Further, we show $c(6)>1/2$ and discuss a relation to the discretized rotation in dimension $4$.
Let K be a number field, let A be a finite-dimensional K-algebra, let
$\operatorname {\mathrm {J}}(A)$
denote the Jacobson radical of A and let
$\Lambda $
be an
$\mathcal {O}_{K}$
-order in A. Suppose that each simple component of the semisimple K-algebra
$A/{\operatorname {\mathrm {J}}(A)}$
is isomorphic to a matrix ring over a field. Under this hypothesis on A, we give an algorithm that, given two
$\Lambda $
-lattices X and Y, determines whether X and Y are isomorphic and, if so, computes an explicit isomorphism
$X \rightarrow Y$
. This algorithm reduces the problem to standard problems in computational algebra and algorithmic algebraic number theory in polynomial time. As an application, we give an algorithm for the following long-standing problem: Given a number field K, a positive integer n and two matrices
$A,B \in \mathrm {Mat}_{n}(\mathcal {O}_{K})$
, determine whether A and B are similar over
$\mathcal {O}_{K}$
, and if so, return a matrix
$C \in \mathrm {GL}_{n}(\mathcal {O}_{K})$
such that
$B= CAC^{-1}$
. We give explicit examples that show that the implementation of the latter algorithm for
$\mathcal {O}_{K}=\mathbb {Z}$
vastly outperforms implementations of all previous algorithms, as predicted by our complexity analysis.
We prove an improvement on Schmidt’s upper bound on the number of number fields of degree n and absolute discriminant less than X for
$6\leq n\leq 94$
. We carry this out by improving and applying a uniform bound on the number of monic integer polynomials, having bounded height and discriminant divisible by a large square, that we proved in a previous work [7].
We investigate the leading digit distribution of the kth largest prime factor of n (for each fixed
$k=1,2,3,\dots $
) as well as the sum of all prime factors of n. In each case, we find that the leading digits are distributed according to Benford’s law. Moreover, Benford behavior emerges simultaneously with equidistribution in arithmetic progressions uniformly to small moduli.
satisfying a familiar functional equation involving the gamma function $\Gamma (s)$. Two general identities are established. The first involves the modified Bessel function $K_{\mu }(z)$, and can be thought of as a ‘modular’ or ‘theta’ relation wherein modified Bessel functions, instead of exponential functions, appear. Appearing in the second identity are $K_{\mu }(z)$, the Bessel functions of imaginary argument $I_{\mu }(z)$, and ordinary hypergeometric functions ${_2F_1}(a,b;c;z)$. Although certain special cases appear in the literature, the general identities are new. The arithmetical functions appearing in the identities include Ramanujan’s arithmetical function $\tau (n)$, the number of representations of n as a sum of k squares $r_k(n)$, and primitive Dirichlet characters $\chi (n)$.