To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study fluctuations of the error term for the number of integer lattice points lying inside a three-dimensional Cygan–Korányi ball of large radius. We prove that the error term, suitably normalized, has a limiting value distribution which is absolutely continuous, and we provide estimates for the decay rate of the corresponding density on the real line. In addition, we establish the existence of all moments for the normalized error term, and we prove that these are given by the moments of the corresponding density.
Let $\ell $ and p be (not necessarily distinct) prime numbers and F be a global function field of characteristic $\ell $ with field of constants $\kappa $. Assume that there exists a prime $P_\infty $ of F which has degree $1$ and let $\mathcal {O}_F$ be the subring of F consisting of functions with no poles away from $P_\infty $. Let $f(X)$ be a polynomial in X with coefficients in $\kappa $. We study solutions to Diophantine equations of the form $Y^{n}=f(X)$ which lie in $\mathcal {O}_F$ and, in particular, show that if m and $f(X)$ satisfy additional conditions, then there are no nonconstant solutions. The results apply to the study of solutions to $Y^{n}=f(X)$ in certain rings of integers in $\mathbb {Z}_{p}$-extensions of F known as constant$\mathbb {Z}_p$-extensions. We prove similar results for solutions in the polynomial ring $K[T_1, \ldots , T_r]$, where K is any field of characteristic $\ell $, showing that the only solutions must lie in K. We apply our methods to study solutions of Diophantine equations of the form $Y^n=\sum _{i=1}^d (X+ir)^m$, where $m,n, d\geq 2$ are integers.
In this paper, we mainly prove the following conjectures of Z.-W. Sun (J. Number Theory133 (2013), 2914–2928): let $p>2$ be a prime. If $p=x^2+3y^2$ with $x,y\in \mathbb {Z}$ and $x\equiv 1\ ({\rm {mod}}\ 3)$, then
Given $A\subseteq GL_2(\mathbb {F}_q)$, we prove that there exist disjoint subsets $B, C\subseteq A$ such that $A = B \sqcup C$ and their additive and multiplicative energies satisfying
The integrality of the numbers $A_{n,m}={(2n)!(2m)!}/{n!m!(n+m)!}$ was observed by Catalan as early as 1874 and Gessel named $A_{n,m}$ the super Catalan numbers. The positivity of the q-super Catalan numbers (q-analogue of the super Catalan numbers) was investigated by Warnaar and Zudilin [‘A q-rious positivity’, Aequationes Math.81 (2011), 177–183]. We prove the divisibility of sums of q-super Catalan numbers, which establishes a q-analogue of Apagodu’s congruence involving super Catalan numbers.
We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus $g>1$ whose Jacobians have Mordell–Weil rank $g$. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few known rational points or non-trivial local height contributions at primes of bad reduction. We illustrate our algorithms with a number of examples where we determine the set of rational points on several modular curves of genus 2 and 3: this includes Atkin–Lehner quotients $X_0^+(N)$ of prime level $N$, the curve $X_{S_4}(13)$, as well as a few other curves relevant to Mazur's Program B. We also compute the set of rational points on the genus 6 non-split Cartan modular curve $X_{\scriptstyle \mathrm { ns}} ^+ (17)$.
Let $\varphi $ be Euler’s function and fix an integer $k\ge 0$. We show that for every initial value $x_1\ge 1$, the sequence of positive integers $(x_n)_{n\ge 1}$ defined by $x_{n+1}=\varphi (x_n)+k$ for all $n\ge 1$ is eventually periodic. Similarly, for all initial values $x_1,x_2\ge 1$, the sequence of positive integers $(x_n)_{n\ge 1}$ defined by $x_{n+2}=\varphi (x_{n+1})+\varphi (x_n)+k$ for all $n\ge 1$ is eventually periodic, provided that k is even.
It was proven by Bullet and Lomonaco [Mating quadratic maps with the modular group II. Invent. Math.220(1) (2020), 185–210] that $\mathcal {F}_a$ is a mating between the modular group $\operatorname {PSL}_2(\mathbb {Z})$ and a quadratic rational map. We show for every $a\in \mathcal {K}$, the iterated images and preimages under $\mathcal {F}_a$ of non-exceptional points equidistribute, in spite of the fact that $\mathcal {F}_a$ is weakly modular in the sense of Dinh, Kaufmann, and Wu [Dynamics of holomorphic correspondences on Riemann surfaces. Int. J. Math.31(05) (2020), 2050036], but it is not modular. Furthermore, we prove that periodic points equidistribute as well.
We study plane curves over finite fields whose tangent lines at smooth $\mathbb {F}_q$-points together cover all the points of $\mathbb {P}^2(\mathbb {F}_q)$.
We state a conjecture that relates the derived category of smooth representations of a $p$-adic split reductive group with the derived category of (quasi-)coherent sheaves on a stack of L-parameters. We investigate the conjecture in the case of the principal block of ${\rm GL}_n$ by showing that the functor should be given by the derived tensor product with the family of representations interpolating the modified Langlands correspondence over the stack of L-parameters that is suggested by the work of Helm and of Emerton and Helm.
Formulas evaluating differences of integer partitions according to the parity of the parts are referred to as Legendre theorems. In this paper we give some formulas of Legendre type for overpartitions.
We first provide a detailed proof of Kato’s classification theorem of log p-divisible groups over a Noetherian Henselian local ring. Exploring Kato’s idea further, we then define the notion of a standard extension of a classical finite étale group scheme (resp. classical étale p-divisible group) by a classical finite flat group scheme (resp. classical p-divisible group) in the category of finite Kummer flat group log schemes (resp. log p-divisible groups), with respect to a given chart on the base. These results are then used to prove that log p-divisible groups are formally log smooth. We then study the finite Kummer flat group log schemes $T_n(\mathbf {M}):=H^{-1}(\mathbf {M}\otimes _{{\mathbb Z}}^L{\mathbb Z}/n{\mathbb Z})$ (resp. the log p-divisible group $\mathbf {M}[p^{\infty }]$) of a log 1-motive $\mathbf {M}$ over an fs log scheme and show that they are étale locally standard extensions. Lastly, we give a proof of the Serre–Tate theorem for log abelian varieties with constant degeneration.
The Hopf–Galois structures admitted by a Galois extension of fields $ L/K $ with Galois group G correspond bijectively with certain subgroups of $ \mathrm{Perm}(G) $. We use a natural partition of the set of such subgroups to obtain a method for partitioning the set of corresponding Hopf–Galois structures, which we term ρ-conjugation. We study properties of this construction, with particular emphasis on the Hopf–Galois analogue of the Galois correspondence, the connection with skew left braces, and applications to questions of integral module structure in extensions of local or global fields. In particular, we show that the number of distinct ρ-conjugates of a given Hopf–Galois structure is determined by the corresponding skew left brace, and that if $ H, H^{\prime} $ are Hopf algebras giving ρ-conjugate Hopf–Galois structures on a Galois extension of local or global fields $ L/K $ then an ambiguous ideal $ \mathfrak{B} $ of L is free over its associated order in H if and only if it is free over its associated order in Hʹ. We exhibit a variety of examples arising from interactions with existing constructions in the literature.
We note that Gabber's rigidity theorem for the algebraic K-theory of henselian pairs also holds true for hermitian K-theory with respect to arbitrary form parameters.
In this paper, we reduce the logarithmic Sarnak conjecture to the $\{0,1\}$-symbolic systems with polynomial mean complexity. By showing that the logarithmic Sarnak conjecture holds for any topologically dynamical system with sublinear complexity, we provide a variant of the $1$-Fourier uniformity conjecture, where the frequencies are restricted to any subset of $[0,1]$ with packing dimension less than one.
Let $\psi $ be a decreasing function. We prove zero-infinity Hausdorff measure criteria for the set of dual $\psi $-approximable points and for the set of inhomogeneous multiplicative $\psi $-approximable points on nondegenerate planar curves. Our results extend theorems of Huang [‘Hausdorff theory of dual approximation on planar curves’, J. reine angew. Math.740 (2018), 63–76] and Beresnevich and Velani [‘A note on three problems in metric Diophantine approximation’, in: Recent Trends in Ergodic Theory and Dynamical Systems, Contemporary Mathematics, 631 (American Mathematical Society, Providence, RI, 2015), 211–229] from s-Hausdorff measure, where $s\in \mathbb R$, to the more general g-Hausdorff measure, where g is a suitable class of dimension functions.
Let $d \ge 3$ be an integer and let $P \in \mathbb{Z}[x]$ be a polynomial of degree d whose Galois group is $S_d$. Let $(a_n)$ be a non-degenerate linearly recursive sequence of integers which has P as its characteristic polynomial. We prove, under the generalised Riemann hypothesis, that the lower density of the set of primes which divide at least one non-zero element of the sequence $(a_n)$ is positive.
John Rognes developed a notion of Galois extension of commutative ring spectra, and this includes a criterion for identifying an extension as unramified. Ramification for commutative ring spectra can be detected by relative topological Hochschild homology and by topological André–Quillen homology. In the classical algebraic context, it is important to distinguish between tame and wild ramification. Noether’s theorem characterizes tame ramification in terms of a normal basis, and tame ramification can also be detected via the surjectivity of the trace map. For commutative ring spectra, we suggest to study the Tate construction as a suitable analog. It tells us at which integral primes there is tame or wild ramification, and we determine its homotopy type in examples in the context of topological K-theory and topological modular forms.