We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathcal {F}$ denote the set of functions $f \colon [-1/2,1/2] \to \mathbb {R}_{\geq 0}$ such that $\int f = 1$. We determine the value of $\inf _{f \in \mathcal {F}} \| f \ast f \|_2^2$ up to a $4 \cdot 10^{-6}$ error, thereby making progress on a problem asked by Ben Green. Furthermore, we prove that a unique minimizer exists. As a corollary, we obtain improvements on the maximum size of $B_h[g]$ sets for $(g,h) \in \{ (2,2),(3,2),(4,2),(1,3),(1,4)\}$.
We prove three results concerning the existence of Bohr sets in threefold sumsets. More precisely, letting G be a countable discrete abelian group and
$\phi _1, \phi _2, \phi _3: G \to G$
be commuting endomorphisms whose images have finite indices, we show that
(1) If
$A \subset G$
has positive upper Banach density and
$\phi _1 + \phi _2 + \phi _3 = 0$
, then
$\phi _1(A) + \phi _2(A) + \phi _3(A)$
contains a Bohr set. This generalizes a theorem of Bergelson and Ruzsa in
$\mathbb {Z}$
and a recent result of the first author.
(2) For any partition
$G = \bigcup _{i=1}^r A_i$
, there exists an
$i \in \{1, \ldots , r\}$
such that
$\phi _1(A_i) + \phi _2(A_i) - \phi _2(A_i)$
contains a Bohr set. This generalizes a result of the second and third authors from
$\mathbb {Z}$
to countable abelian groups.
(3) If
$B, C \subset G$
have positive upper Banach density and
$G = \bigcup _{i=1}^r A_i$
is a partition,
$B + C + A_i$
contains a Bohr set for some
$i \in \{1, \ldots , r\}$
. This is a strengthening of a theorem of Bergelson, Furstenberg and Weiss.
All results are quantitative in the sense that the radius and rank of the Bohr set obtained depends only on the indices
$[G:\phi _j(G)]$
, the upper Banach density of A (in (1)), or the number of sets in the given partition (in (2) and (3)).
We investigate the maximal finite length submodule of the Breuil–Kisin prismatic cohomology of a smooth proper formal scheme over a $p$-adic ring of integers. This submodule governs pathology phenomena in integral $p$-adic cohomology theories. Geometric applications include a control, in low degrees and mild ramifications, of (1) the discrepancy between two naturally associated Albanese varieties in characteristic $p$, and (2) the kernel of the specialization map in $p$-adic étale cohomology. As an arithmetic application, we study the boundary case of the theory due to Fontaine and Laffaille, Fontaine and Messing, and Kato. Also included is an interesting example, generalized from a construction in Bhatt, Morrow and Scholze's work, which illustrates some of our theoretical results being sharp, and negates a question of Breuil.
In this paper, we propose a modified Kudla–Rapoport conjecture for the Krämer model of unitary Rapoport–Zink space at a ramified prime, which is a precise identity relating intersection numbers of special cycles to derivatives of Hermitian local density polynomials. We also introduce the notion of special difference cycles, which has surprisingly simple description. Combining this with induction formulas of Hermitian local density polynomials, we prove the modified Kudla–Rapoport conjecture when $n=3$. Our conjecture, combining with known results at inert and infinite primes, implies the arithmetic Siegel–Weil formula for all non-singular coefficients when the level structure of the corresponding unitary Shimura variety is defined by a self-dual lattice.
Let $f(X) \in {\mathbb Z}[X]$ be a polynomial of degree $d \ge 2$ without multiple roots and let ${\mathcal F}(N)$ be the set of Farey fractions of order N. We use bounds for some new character sums and the square-sieve to obtain upper bounds, pointwise and on average, on the number of fields ${\mathbb Q}(\sqrt {f(r)})$ for $r\in {\mathcal F}(N)$, with a given discriminant.
We give a complete classification of finite subgroups of automorphisms of K3 surfaces up to deformation. The classification is in terms of Hodge theoretic data associated to certain conjugacy classes of finite subgroups of the orthogonal group of the K3 lattice. The moduli theory of K3 surfaces, in particular the surjectivity of the period map and the strong Torelli theorem allow us to interpret this datum geometrically. Our approach is computer aided and involves Hermitian lattices over number fields.
Let $x\in [0,1)$ be an irrational number and let $x=[a_{1}(x),a_{2}(x),\ldots ]$ be its continued fraction expansion with partial quotients $\{a_{n}(x): n\geq 1\}$. Given a natural number m and a vector $(x_{1},\ldots ,x_{m})\in [0,1)^{m},$ we derive the asymptotic behaviour of the shortest distance function
$$ \begin{align*} M_{n,m}(x_{1},\ldots,x_{m})=\max\{k\in \mathbb{N}: a_{i+j}(x_{1})=\cdots= a_{i+j}(x_{m}) \ \text{for}~ j=1,\ldots,k \mbox{ and some } i \mbox{ with } 0\leq i \leq n-k\}, \end{align*} $$
which represents the run-length of the longest block of the same symbol among the first n partial quotients of $(x_{1},\ldots ,x_{m}).$ We also calculate the Hausdorff dimension of the level sets and exceptional sets arising from the shortest distance function.
Let p be a prime and let r, s be positive integers. In this paper, we prove that the Goormaghtigh equation $(x^m-1)/(x-1)=(y^n-1)/(y-1)$, $x,y,m,n \in {\mathbb {N}}$, $\min \{x,y\}>1$, $\min \{m,n\}>2$ with $(x,y)=(p^r,p^s+1)$ has only one solution $(x,y,m,n)=(2,5,5,3)$. This result is related to the existence of some partial difference sets in combinatorics.
Niven’s theorem asserts that $\{\cos (r\pi ) \mid r\in \mathbb {Q}\}\cap \mathbb {Q}=\{0,\pm 1,\pm 1/2\}.$ In this paper, we use elementary techniques and results from arithmetic dynamics to obtain an algorithm for classifying all values in the set $\{\cos (r\pi ) \mid r\in \mathbb {Q}\}\cap K$, where K is an arbitrary number field.
We use bounds of character sums and some combinatorial arguments to show the abundance of very smooth numbers which also have very few nonzero binary digits.
As an extension of Sylvester’s matrix, a tridiagonal matrix is investigated by determining both left and right eigenvectors. Orthogonality relations between left and right eigenvectors are derived. Two determinants of the matrices constructed by the left and right eigenvectors are evaluated in closed form.
We prove quantitative bounds for the inverse theorem for Gowers uniformity norms $\mathsf {U}^5$ and $\mathsf {U}^6$ in $\mathbb {F}_2^n$. The proof starts from an earlier partial result of Gowers and the author which reduces the inverse problem to a study of algebraic properties of certain multilinear forms. The bulk of the work in this paper is a study of the relationship between the natural actions of $\operatorname {Sym}_4$ and $\operatorname {Sym}_5$ on the space of multilinear forms and the partition rank, using an algebraic version of regularity method. Along the way, we give a positive answer to a conjecture of Tidor about approximately symmetric multilinear forms in five variables, which is known to be false in the case of four variables. Finally, we discuss the possible generalization of the argument for $\mathsf {U}^k$ norms.
A set of integers greater than 1 is primitive if no member in the set divides another. Erdős proved in 1935 that the series
$f(A) = \sum _{a\in A}1/(a \log a)$
is uniformly bounded over all choices of primitive sets A. In 1986, he asked if this bound is attained for the set of prime numbers. In this article, we answer in the affirmative.
As further applications of the method, we make progress towards a question of Erdős, Sárközy and Szemerédi from 1968. We also refine the classical Davenport–Erdős theorem on infinite divisibility chains, and extend a result of Erdős, Sárközy and Szemerédi from 1966.
The tame Gras–Munnier Theorem gives a criterion for the existence of a $ {\mathbb Z}/p{\mathbb Z} $-extension of a number field K ramified at exactly a tame set S of places of K, the finite $v \in S$ necessarily having norm $1$ mod p. The criterion is the existence of a nontrivial dependence relation on the Frobenius elements of these places in a certain governing extension. We give a short new proof which extends the theorem by showing the subset of elements of $H^1(G_S,{\mathbb {Z}}/p{\mathbb {Z}})$ giving rise to such extensions of K has the same cardinality as the set of these dependence relations. We then reprove the key Proposition 2.2 using the more sophisticated Greenberg–Wiles formula based on global duality.
Sarnak’s density conjecture is an explicit bound on the multiplicities of nontempered representations in a sequence of cocompact congruence arithmetic lattices in a semisimple Lie group, which is motivated by the work of Sarnak and Xue ([58]). The goal of this work is to discuss similar hypotheses, their interrelation and their applications. We mainly focus on two properties – the spectral spherical density hypothesis and the geometric Weak injective radius property. Our results are strongest in the p-adic case, where we show that the two properties are equivalent, and both imply Sarnak’s general density hypothesis. One possible application is that either the spherical density hypothesis or the Weak injective radius property imply Sarnak’s optimal lifting property ([57]). Conjecturally, all those properties should hold in great generality. We hope that this work will motivate their proofs in new cases.
We construct an anticyclotomic Euler system for the Rankin–Selberg convolutions of two modular forms, using p-adic families of generalised Gross–Kudla–Schoen diagonal cycles. As applications of this construction, we prove new results on the Bloch–Kato conjecture in analytic ranks zero and one, and a divisibility towards an Iwasawa main conjecture.
We describe a family of compactifications of the space of Bridgeland stability conditions of a triangulated category, following earlier work by Bapat, Deopurkar and Licata. We particularly consider the case of the 2-Calabi–Yau category of the
$A_2$
quiver. The compactification is the closure of an embedding (depending on q) of the stability space into an infinite-dimensional projective space. In the
$A_2$
case, the three-strand braid group
$B_3$
acts on this closure. We describe two distinguished braid group orbits in the boundary, points of which can be identified with certain rational functions in q. Points in one of the orbits are exactly the q-deformed rational numbers recently introduced by Morier-Genoud and Ovsienko, while the other orbit gives a new q-deformation of the rational numbers. Specialising q to a positive real number, we obtain a complete description of the boundary of the compactification.
We prove that real topological Hochschild homology $\mathrm {THR}$ for schemes with involution satisfies base change and descent for the ${\mathbb {Z}/2}$-isovariant étale topology. As an application, we provide computations for the projective line (with and without involution) and the higher-dimensional projective spaces.
We present some results related to Zilber’s Exponential-Algebraic Closedness Conjecture, showing that various systems of equations involving algebraic operations and certain analytic functions admit solutions in the complex numbers. These results are inspired by Zilber’s theorems on raising to powers.
We show that algebraic varieties which split as a product of a linear subspace of an additive group and an algebraic subvariety of a multiplicative group intersect the graph of the exponential function, provided that they satisfy Zilber’s freeness and rotundity conditions, using techniques from tropical geometry.
We then move on to prove a similar theorem, establishing that varieties which split as a product of a linear subspace and a subvariety of an abelian variety A intersect the graph of the exponential map of A (again under the analogues of the freeness and rotundity conditions). The proof uses homology and cohomology of manifolds.
Finally, we show that the graph of the modular j-function intersects varieties which satisfy freeness and broadness and split as a product of a Möbius subvariety of a power of the upper-half plane and a complex algebraic variety, using Ratner’s orbit closure theorem to study the images under j of Möbius varieties.