To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove convergence in norm and pointwise almost everywhere on $L^p$, $p\in (1,\infty )$, for certain multi-parameter polynomial ergodic averages by establishing the corresponding multi-parameter maximal and oscillation inequalities. Our result, in particular, gives an affirmative answer to a multi-parameter variant of the Bellow–Furstenberg problem. This paper is also the first systematic treatment of multi-parameter oscillation semi-norms which allows an efficient handling of multi-parameter pointwise convergence problems with arithmetic features. The methods of proof of our main result develop estimates for multi-parameter exponential sums, as well as introduce new ideas from the so-called multi-parameter circle method in the context of the geometry of backwards Newton diagrams that are dictated by the shape of the polynomials defining our ergodic averages.
We prove discrete restriction estimates for a broad class of hypersurfaces arising in seminal work of Birch. To do so, we use a variant of Bourgain’s arithmetic version of the Tomas–Stein method and Magyar’s decomposition of the Fourier transform of the indicator function of the integer points on a hypersurface.
Let $S=\{s_{1}, s_{2}, \ldots \}$ be an unbounded sequence of positive integers with $s_{n+1}/s_{n}$ approaching $\alpha $ as $n\rightarrow \infty $ and let $\beta>\max (\alpha , 2)$. We show that for all sufficiently large positive integers l, if $A\subset [0, l]$ with $l\in A$, $\gcd A=1$ and $|A|\geq (2-{k}/{\lambda \beta })l/(\lambda +1)$, where $\lambda =\lceil {k}/{\beta }\rceil $, then $kA\cap S\neq \emptyset $ for $2<\beta \leq 3$ and $k\geq {2\beta }/{(\beta -2)}$ or for $\beta>3$ and $k\geq 3$.
We study the étale cohomology of Hilbert modular varieties, building on the methods introduced by Caraiani and Scholze for unitary Shimura varieties. We obtain the analogous vanishing theorem: in the ‘generic’ case, the cohomology with torsion coefficients is concentrated in the middle degree. We also probe the structure of the cohomology beyond the generic case, obtaining bounds on the range of degrees where cohomology with torsion coefficients can be non-zero. The proof is based on the geometric Jacquet–Langlands functoriality established by Tian and Xiao and avoids trace formula computations for the cohomology of Igusa varieties. As an application, we show that, when $p$ splits completely in the totally real field and under certain technical assumptions, the $p$-adic local Langlands correspondence for $\mathrm {GL}_2(\mathbb {Q}_p)$ occurs in the completed homology of Hilbert modular varieties.
We derive an explicit formula for the N-point correlation $F_N(s)$ of the van der Corput sequence in base $2$ for all $N \in \mathbb {N}$ and $s \geq 0$. The formula can be evaluated without explicit knowledge about the elements of the van der Corput sequence. This constitutes the first example of an exact closed-form expression of $F_N(s)$ for all $N \in \mathbb {N}$ and all $s \geq 0$ which does not require explicit knowledge about the involved sequence. Moreover, it can be immediately read off that $\lim _{N \to \infty } F_N(s)$ exists only for $0 \leq s \leq 1/2$.
We show that if $N_2(n)=1$, then the number $2n-3$ is prime. The average behavior of $N_2(n)$ is studied. We prove that the set $\{n:N_2(n)\le k,\,n\ge 2\}$ has zero natural density.
Let $\ell $ be a prime number. The Iwasawa theory of multigraphs is the systematic study of growth patterns in the number of spanning trees in abelian $\ell $-towers of multigraphs. In this context, growth patterns are realized by certain analogs of Iwasawa invariants, which depend on the prime $\ell $ and the abelian $\ell $-tower of multigraphs. We formulate and study statistical questions about the behavior of the Iwasawa $\mu $ and $\lambda $ invariants.
Let G be a semiabelian variety defined over an algebraically closed field K of prime characteristic. We describe the intersection of a subvariety X of G with a finitely generated subgroup of $G(K)$.
In our paper, we study multiplicative properties of difference sets $A-A$ for large sets $A \subseteq {\mathbb {Z}}/q{\mathbb {Z}}$ in the case of composite q. We obtain a quantitative version of a result of A. Fish about the structure of the product sets $(A-A)(A-A)$. Also, we show that the multiplicative covering number of any difference set is always small.
Given a set $S=\{x^2+c_1,\dots,x^2+c_s\}$ defined over a field and an infinite sequence $\gamma$ of elements of S, one can associate an arboreal representation to $\gamma$, generalising the case of iterating a single polynomial. We study the probability that a random sequence $\gamma$ produces a “large-image” representation, meaning that infinitely many subquotients in the natural filtration are maximal. We prove that this probability is positive for most sets S defined over $\mathbb{Z}[t]$, and we conjecture a similar positive-probability result for suitable sets over $\mathbb{Q}$. As an application of large-image representations, we prove a density-zero result for the set of prime divisors of some associated quadratic sequences. We also consider the stronger condition of the representation being finite-index, and we classify all S possessing a particular kind of obstruction that generalises the post-critically finite case in single-polynomial iteration.
Let $k \geqslant 2$ be an integer. We prove that factorisation of integers into k parts follows the Dirichlet distribution $\mathrm{Dir}\left({1}/{k},\ldots,{1}/{k}\right)$ by multidimensional contour integration, thereby generalising the Deshouillers–Dress–Tenenbaum (DDT) arcsine law on divisors where $k=2$. The same holds for factorisation of polynomials or permutations. Dirichlet distribution with arbitrary parameters can be modelled similarly.
We prove that the Jacquet–Langlands correspondence for cohomological automorphic forms on quaternionic Shimura varieties is realized by a Hodge class. Conditional on Kottwitz’s conjecture for Shimura varieties attached to unitary similitude groups, we also show that the image of this Hodge class in $\ell $-adic cohomology is Galois invariant for all $\ell $.
Consider the family of automorphic L-functions associated with primitive cusp forms of level one, ordered by weight k. Assuming that k tends to infinity, we prove a new approximation formula for the cubic moment of shifted L-values over this family which relates it to the fourth moment of the Riemann zeta function. More precisely, the formula includes a conjectural main term, the fourth moment of the Riemann zeta function and error terms of size smaller than that predicted by the recipe conjectures.
We say that $S\subseteq \mathbb Z$ is a set of k-recurrence if for every measure-preserving transformation T of a probability measure space $(X,\mu )$ and every $A\subseteq X$ with $\mu (A)>0$, there is an $n\in S$ such that $\mu (A\cap T^{-n} A\cap T^{-2n}\cap \cdots \cap T^{-kn}A)>0$. A set of $1$-recurrence is called a set of measurable recurrence. Answering a question of Frantzikinakis, Lesigne, and Wierdl [Sets of k-recurrence but not (k+1)-recurrence. Ann. Inst. Fourier (Grenoble)56(4) (2006), 839–849], we construct a set of $2$-recurrence S with the property that $\{n^2:n\in S\}$ is not a set of measurable recurrence.
Leonetti and Luca [‘On the iterates of the shifted Euler’s function’, Bull. Aust. Math. Soc., to appear] have shown that the integer sequence $(x_n)_{n\geq 1}$ defined by $x_{n+2}=\phi (x_{n+1})+\phi (x_{n})+k$, where $x_1,x_2\geq 1$, $k\geq 0$ and $2 \mid k$, is bounded by $4^{X^{3^{k+1}}}$, where $X=(3x_1+5x_2+7k)/2$. We improve this result by showing that the sequence $(x_n)$ is bounded by $2^{2X^2+X-3}$, where $X=x_1+x_2+2k$.
The classical Mordell–Weil theorem implies that an abelian variety A over a number field K has only finitely many K-rational torsion points. This finitude of torsion still holds even over the cyclotomic extension $K^{\mathrm {cyc}}=K{\mathbb Q}^{\mathrm {ab}}$ by a result of Ribet. In this article, we consider the finiteness of torsion points of an abelian variety A over the infinite algebraic extension $K_B$ obtained by adjoining the coordinates of all torsion points of an abelian variety B. Assuming the Mumford–Tate conjecture, and up to a finite extension of the base field K, we give a necessary and sufficient condition for the finiteness of $A(K_B)_{\mathrm tors}$ in terms of Mumford–Tate groups. We give a complete answer when both abelian varieties have dimension at most 3, or when both have complex multiplication.
We consider families of exponential sums indexed by a subgroup of invertible classes modulo some prime power q. For fixed d, we restrict to moduli q so that there is a unique subgroup of invertible classes modulo q of order d. We study distribution properties of these families of sums as q grows and we establish equidistribution results in some regions of the complex plane which are described as the image of a multi-dimensional torus via an explicit Laurent polynomial. In some cases, the region of equidistribution can be interpreted as the one delimited by a hypocycloid, or as a Minkowski sum of such regions.
Let $\gcd (n_{1},\ldots ,n_{k})$ denote the greatest common divisor of positive integers $n_{1},\ldots ,n_{k}$ and let $\phi $ be the Euler totient function. For any real number $x>3$ and any integer $k\geq 2$, we investigate the asymptotic behaviour of $\sum _{n_{1}\ldots n_{k}\leq x}\phi (\gcd (n_{1},\ldots ,n_{k})). $
In recent years, mock theta functions in the modern sense have received great attention to seek examples of q-hypergeometric series and find their alternative representations. In this paper, we discover some new mock theta functions and express them in terms of Hecke-type double sums based on some basic hypergeometric series identities given by Z.G. Liu.