We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let
$h \geq 2$
be a positive integer. We introduce the concept of minimal restricted asymptotic bases and obtain some examples of minimal restricted asymptotic bases of order h.
Motivated by near-identical graphs of two increasing continuous functions—one related to Zaremba’s conjecture and the other due to Salem—we provide an explicit connection between fractals and regular sequences by showing that the graphs of ghost distributions, the distribution functions of measures associated to regular sequences, are sections of self-affine sets. Additionally, we provide a sufficient condition for such measures to be purely singular continuous. As a corollary, and analogous to Salem’s strictly increasing singular continuous function, we show that the ghost distributions of the Zaremba sequences are singular continuous.
Let
$\mathcal {A}$
be the set of all integers of the form
$\gcd (n, F_n)$
, where n is a positive integer and
$F_n$
denotes the nth Fibonacci number. Leonetti and Sanna proved that
$\mathcal {A}$
has natural density equal to zero, and asked for a more precise upper bound. We prove that
for all sufficiently large x. In fact, we prove that a similar bound also holds when the sequence of Fibonacci numbers is replaced by a general nondegenerate Lucas sequence.
We study multivariate polynomials over ‘structured’ grids. Firstly, we propose an interpretation as to what it means for a finite subset of a field to be structured; we do so by means of a numerical parameter, the nullity. We then extend several results – notably, the Combinatorial Nullstellensatz and the Coefficient Theorem – to polynomials over structured grids. The main point is that the structure of a grid allows the degree constraints on polynomials to be relaxed.
We study the Betti map of a particular (but relevant) section of the family of Jacobians of hyperelliptic curves using the polynomial Pell equation
$A^2-DB^2=1$
, with
$A,B,D\in \mathbb {C}[t]$
and certain ramified covers
$\mathbb {P}^1\to \mathbb {P}^1$
arising from such equation and having heavy constrains on their ramification. In particular, we obtain a special case of a result of André, Corvaja and Zannier on the submersivity of the Betti map by studying the locus of the polynomials D that fit in a Pell equation inside the space of polynomials of fixed even degree. Moreover, Riemann existence theorem associates to the abovementioned covers certain permutation representations: We are able to characterize the representations corresponding to ‘primitive’ solutions of the Pell equation or to powers of solutions of lower degree and give a combinatorial description of these representations when D has degree 4. In turn, this characterization gives back some precise information about the rational values of the Betti map.
Let
$\mathbb {T}$
be the unit circle and
${\Gamma \backslash G}$
the
$3$
-dimensional Heisenberg nilmanifold. We consider the skew products on
$\mathbb {T} \times {\Gamma \backslash G}$
and prove that the Möbius function is linearly disjoint from these skew products which improves the recent result of Huang, Liu and Wang [‘Möbius disjointness for skew products on a circle and a nilmanifold’, Discrete Contin. Dyn. Syst.41(8) (2021), 3531–3553].
In 1844, Joseph Liouville proved the existence of transcendental numbers. He introduced the set $\mathcal L$ of numbers, now known as Liouville numbers, and showed that they are all transcendental. It is known that $\mathcal L$ has cardinality $\mathfrak {c}$, the cardinality of the continuum, and is a dense $G_{\delta }$ subset of the set $\mathbb {R}$ of all real numbers. In 1962, Erdős proved that every real number is the sum of two Liouville numbers. In this paper, a set W of complex numbers is said to have the Erdős property if every real number is the sum of two numbers in W. The set W is said to be an Erdős–Liouville set if it is a dense subset of $\mathcal {L}$ and has the Erdős property. Each subset of $\mathbb {R}$ is assigned its subspace topology, where $\mathbb {R}$ has the euclidean topology. It is proved here that: (i) there exist $2^{\mathfrak {c}}$ Erdős–Liouville sets no two of which are homeomorphic; (ii) there exist $\mathfrak {c}$ Erdős–Liouville sets each of which is homeomorphic to $\mathcal {L}$ with its subspace topology and homeomorphic to the space of all irrational numbers; (iii) each Erdős–Liouville set L homeomorphic to $\mathcal {L}$ contains another Erdős–Liouville set $L'$ homeomorphic to $\mathcal {L}$. Therefore, there is no minimal Erdős–Liouville set homeomorphic to $\mathcal {L}$.
We consider the set of elements in a translation of the middle-third Cantor set which can be well approximated by algebraic numbers of bounded degree. A doubling dimensional result is given, which enables one to conclude an upper bound on the dimension of the set in question for a generic translation.
A multivariate, formal power series over a field K is a Bézivin series if all of its coefficients can be expressed as a sum of at most r elements from a finitely generated subgroup $G \le K^*$; it is a Pólya series if one can take $r=1$. We give explicit structural descriptions of D-finite Bézivin series and D-finite Pólya series over fields of characteristic $0$, thus extending classical results of Pólya and Bézivin to the multivariate setting.
Let $p$ be a prime number. Kęstutis Česnavičius proved that for an abelian variety $A$ over a global field $K$, the $p$-Selmer group $\mathrm {Sel}_{p}(A/L)$ grows unboundedly when $L$ ranges over the $(\mathbb {Z}/p\mathbb {Z})$-extensions of $K$. Moreover, he raised a further problem: is $\dim _{\mathbb {F}_{p}} \text{III} (A/L) [p]$ also unbounded under the above conditions? In this paper, we give a positive answer to this problem in the case $p \neq \mathrm {char}\,K$. As an application, this result enables us to generalize the work of Clark, Sharif and Creutz on the growth of potential $\text{III}$ in cyclic extensions. We also answer a problem proposed by Lim and Murty concerning the growth of the fine Tate–Shafarevich groups.
Given
$E \subseteq \mathbb {F}_q^d \times \mathbb {F}_q^d$
, with the finite field
$\mathbb {F}_q$
of order q and the integer
$d\,\ge \, 2$
, we define the two-parameter distance set
$\Delta _{d, d}(E)=\{(\|x-y\|, \|z-t\|) : (x, z), (y, t) \in E \}$
. Birklbauer and Iosevich [‘A two-parameter finite field Erdős–Falconer distance problem’, Bull. Hellenic Math. Soc.61 (2017), 21–30] proved that if
$|E| \gg q^{{(3d+1)}/{2}}$
, then
$ |\Delta _{d, d}(E)| = q^2$
. For
$d=2$
, they showed that if
$|E| \gg q^{{10}/{3}}$
, then
$ |\Delta _{2, 2}(E)| \gg q^2$
. In this paper, we give extensions and improvements of these results. Given the diagonal polynomial
$P(x)=\sum _{i=1}^da_ix_i^s\in \mathbb F_q[x_1,\ldots , x_d]$
, the distance induced by P over
$\mathbb {F}_q^d$
is
$\|x-y\|_s:=P(x-y)$
, with the corresponding distance set
$\Delta ^s_{d, d}(E)=\{(\|x-y\|_s, \|z-t\|_s) : (x, z), (y, t) \in E \}$
. We show that if
$|E| \gg q^{{(3d+1)}/{2}}$
, then
$ |\Delta _{d, d}^s(E)| \gg q^2$
. For
$d=2$
and the Euclidean distance, we improve the former result over prime fields by showing that
$ |\Delta _{2,2}(E)| \gg p^2$
for
$|E| \gg p^{{13}/{4}}$
.
We define cohomological complexes of locally compact abelian groups associated with varieties over p-adic fields and prove a duality theorem under some assumption. Our duality takes the form of Pontryagin duality between locally compact motivic cohomology groups.
Given a K3 surface X over a number field K with potentially good reduction everywhere, we prove that the set of primes of K where the geometric Picard rank jumps is infinite. As a corollary, we prove that either
$X_{\overline {K}}$
has infinitely many rational curves or X has infinitely many unirational specialisations.
Our result on Picard ranks is a special case of more general results on exceptional classes for K3 type motives associated to GSpin Shimura varieties. These general results have several other applications. For instance, we prove that an abelian surface over a number field K with potentially good reduction everywhere is isogenous to a product of elliptic curves modulo infinitely many primes of K.
Let $\varphi _1,\ldots ,\varphi _r\in {\mathbb Z}[z_1,\ldots z_k]$ be integral linear combinations of elementary symmetric polynomials with $\text {deg}(\varphi _j)=k_j\ (1\le j\le r)$, where $1\le k_1<k_2<\cdots <k_r=k$. Subject to the condition $k_1+\cdots +k_r\ge \tfrac {1}{2}k(k-~1)+2$, we show that there is a paucity of nondiagonal solutions to the Diophantine system $\varphi _j({\mathbf x})=\varphi _j({\mathbf y})\ (1\le j\le r)$.
For a smooth rigid space X over a perfectoid field extension K of
$\mathbb {Q}_p$
, we investigate how the v-Picard group of the associated diamond
$X^{\diamondsuit }$
differs from the analytic Picard group of X. To this end, we construct a left-exact ‘Hodge–Tate logarithm’ sequence
We deduce some analyticity criteria which have applications to p-adic modular forms. For algebraically closed K, we show that the sequence is also right-exact if X is proper or one-dimensional. In contrast, we show that, for the affine space
$\mathbb {A}^n$
, the image of the Hodge–Tate logarithm consists precisely of the closed differentials. It follows that, up to a splitting, v-line bundles may be interpreted as Higgs bundles. For proper X, we use this to construct the p-adic Simpson correspondence of rank one.
Given a singular modulus
$j_0$
and a set of rational primes S, we study the problem of effectively determining the set of singular moduli j such that
$j-j_0$
is an S-unit. For every
$j_0 \neq 0$
, we provide an effective way of finding this set for infinitely many choices of S. The same is true if
$j_0=0$
and we assume the Generalised Riemann Hypothesis. Certain numerical experiments will also lead to the formulation of a “uniformity conjecture” for singular S-units.
A modified form of Euclid’s algorithm has gained popularity among musical composers following Toussaint’s 2005 survey of so-called Euclidean rhythms in world music. We offer a method to easily calculate Euclid’s algorithm by hand as a modification of Bresenham’s line-drawing algorithm. Notably, this modified algorithm is a nonrecursive matrix construction, using only modular arithmetic and combinatorics. This construction does not outperform the traditional divide-with-remainder method; it is presented for combinatorial interest and ease of hand computation.
We investigate uniform upper bounds for the number of powerful numbers in short intervals $(x, x + y]$. We obtain unconditional upper bounds $O({y}/{\log y})$ and $O(\kern1.3pt y^{11/12})$ for all powerful numbers and $y^{1/2}$-smooth powerful numbers, respectively. Conditional on the $abc$-conjecture, we prove the bound $O({y}/{\log ^{1+\epsilon } y})$ for squarefull numbers and the bound $O(\kern1.3pt y^{(2 + \epsilon )/k})$ for k-full numbers when $k \ge 3$. These bounds are related to Roth’s theorem on arithmetic progressions and the conjecture on the nonexistence of three consecutive squarefull numbers.
Motivated by the p-adic approach in two of Mahler’s problems, we obtain some results on p-adic analytic interpolation of sequences of integers $(u_n)_{n\geq 0}$. We show that if $(u_n)_{n\geq 0}$ is a sequence of integers with $u_n = O(n)$ which can be p-adically interpolated by an analytic function $f:\mathbb {Z}_p\rightarrow \mathbb {Q}_p$, then $f(x)$ is a polynomial function of degree at most one. The case $u_n=O(n^d)$ with $d>1$ is also considered with additional conditions. Moreover, if X and Y are subsets of $\mathbb {Z}$ dense in $\mathbb {Z}_p$, we prove that there are uncountably many p-adic analytic injective functions $f:\mathbb {Z}_p\to \mathbb {Q}_p$, with rational coefficients, such that $f(X)=Y$.