We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let G be a p-adic classical group. The representations in a given Bernstein component can be viewed as modules for the corresponding Hecke algebra—the endomorphism algebra of a pro-generator of the given component. Using Heiermann’s construction of these algebras, we describe the Bernstein components of the Gelfand–Graev representation for $G=\mathrm {SO}(2n+1)$, $\mathrm {Sp}(2n)$, and $\mathrm {O}(2n)$.
In this paper, we prove results about solutions of the Diophantine equation $x^p+y^p=z^3$ over various number fields using the modular method. First, by assuming some standard modularity conjecture, we prove an asymptotic result for general number fields of narrow class number one satisfying some technical conditions. Second, we show that there is an explicit bound such that the equation $x^p+y^p=z^3$ does not have a particular type of solution over $K=\mathbb {Q}(\sqrt {-d})$, where $d=1,7,19,43,67$ whenever p is bigger than this bound. During the course of the proof, we prove various results about the irreducibility of Galois representations, image of inertia groups, and Bianchi newforms.
Let
$0\leq \alpha \leq \infty $
,
$0\leq a\leq b\leq \infty $
and
$\psi $
be a positive function defined on
$(0,\infty )$
. This paper is concerned with the growth of
$L_{n}(x)$
, the largest digit of the first n terms in the Lüroth expansion of
$x\in (0,1]$
. Under some suitable assumptions on the function
$\psi $
, we completely determine the Hausdorff dimensions of the sets
We prove an asymptotic expansion of the second moment of the central values of the
$\mathrm {GL}(n)\times \mathrm {GL}(n)$
Rankin–Selberg L-functions
$L(1/2,\pi \otimes \pi _0)$
for a fixed cuspidal automorphic representation
$\pi _0$
over the family of
$\pi $
with analytic conductors bounded by a quantity that is tending to infinity. Our proof uses the integral representations of the L-functions, period with regularised Eisenstein series and the invariance properties of the analytic newvectors.
Using a recent breakthrough of Smith [18], we improve the results of Fouvry and Klüners [4, 5] on the solubility of the negative Pell equation. Let
$\mathcal {D}$
denote the set of positive squarefree integers having no prime factors congruent to
$3$
modulo
$4$
. Stevenhagen [19] conjectured that the density of d in
$\mathcal {D}$
such that the negative Pell equation
$x^2-dy^2=-1$
is solvable with
$x, y \in \mathbb {Z}$
is
$58.1\%$
, to the nearest tenth of a percent. By studying the distribution of the
$8$
-rank of narrow class groups
$\operatorname {\mathrm {Cl}}^+(d)$
of
$\mathbb {Q}(\sqrt {d})$
, we prove that the infimum of this density is at least
$53.8\%$
.
Andrews [Generalized Frobenius Partitions, Memoirs of the American Mathematical Society, 301 (American Mathematical Society, Providence, RI, 1984)] defined two families of functions,
$\phi _k(n)$
and
$c\phi _k(n),$
enumerating two types of combinatorial objects which he called generalised Frobenius partitions. Andrews proved a number of Ramanujan-like congruences satisfied by specific functions within these two families. Numerous other authors proved similar results for these functions, often with a view towards a specific choice of the parameter
$k.$
Our goal is to identify an infinite family of values of k such that
$\phi _k(n)$
is even for all n in a specific arithmetic progression; in particular, we prove that, for all positive integers
$\ell ,$
all primes
$p\geq 5$
and all values
$r, 0 < r < p,$
such that
$24r+1$
is a quadratic nonresidue modulo
$p,$
for all
$n\geq 0.$
Our proof of this result is truly elementary, relying on a lemma from Andrews’ memoir, classical q-series results and elementary generating function manipulations. Such a result, which holds for infinitely many values of
$k,$
is rare in the study of arithmetic properties satisfied by generalised Frobenius partitions, primarily because of the unwieldy nature of the generating functions in question.
We use a linear algebra interpretation of the action of Hecke operators on Drinfeld cusp forms to prove that when the dimension of the
$\mathbb {C}_\infty $
-vector space
$S_{k,m}(\mathrm {{GL}}_2(\mathbb {F}_q[t]))$
is one, the Hecke operator
$\mathbf {T}_t$
is injective on
$S_{k,m}(\mathrm {{GL}}_2(\mathbb {F}_q[t]))$
and
$S_{k,m}(\Gamma _0(t))$
is a direct sum of oldforms and newforms.
We build on the recent techniques of Codogni and Patakfalvi (2021, Inventiones Mathematicae 223, 811–894), which were used to establish theorems about semi-positivity of the Chow Mumford line bundles for families of
$\mathrm {K}$
-semistable Fano varieties. Here, we apply the Central Limit Theorem to ascertain the asymptotic probabilistic nature of the vertices of the Harder and Narasimhan polygons. As an application of our main result, we use it to establish a filtered vector space analogue of the main technical result of Codogni and Patakfalvi (2021, Inventiones Mathematicae 223, 811–894). In doing so, we expand upon the slope stability theory, for filtered vector spaces, that was initiated by Faltings and Wüstholz (1994, Inventiones Mathematicae 116, 109–138). One source of inspiration for our abstract study of Harder and Narasimhan data, which is a concept that we define here, is the lattice reduction methods of Grayson (1984, Commentarii Mathematici Helvetic 59, 600–634). Another is the work of Faltings and Wüstholz (1994, Inventiones Mathematicae 116, 109–138), and Evertse and Ferretti (2013, Annals of Mathematics 177, 513–590), which is within the context of Diophantine approximation for projective varieties.
Let
$F_{2^n}$
be the Frobenius group of degree
$2^n$
and of order
$2^n ( 2^n-1)$
with
$n \ge 4$
. We show that if
$K/\mathbb {Q} $
is a Galois extension whose Galois group is isomorphic to
$F_{2^n}$
, then there are
$\dfrac {2^{n-1} +(-1)^n }{3}$
intermediate fields of
$K/\mathbb {Q} $
of degree
$4 (2^n-1)$
such that they are not conjugate over
$\mathbb {Q}$
but arithmetically equivalent over
$\mathbb {Q}$
. We also give an explicit method to construct these arithmetically equivalent fields.
When a page, represented by the interval
$[0,1]$
, is folded right over left
$n $
times, the right-hand fold contains a sequence of points. We specify these points using two different representation techniques, both involving binary signed-digit representations.
Let a, b, c be fixed coprime positive integers with
$\min \{a,b,c\}>1$
. We discuss the conjecture that the equation
$a^{x}+b^{y}=c^{z}$
has at most one positive integer solution
$(x,y,z)$
with
$\min \{x,y,z\}>1$
, which is far from solved. For any odd positive integer r with
$r>1$
, let
$f(r)=(-1)^{(r-1)/2}$
and
$2^{g(r)}\,\|\, r-(-1)^{(r-1)/2}$
. We prove that if one of the following conditions is satisfied, then the conjecture is true: (i)
$c=2$
; (ii) a, b and c are distinct primes; (iii)
$a=2$
and either
$f(b)\ne f(c)$
, or
$f(b)=f(c)$
and
$g(b)\ne g(c)$
.
When $p$ is an odd prime, Delbourgo observed that any Kubota–Leopoldt $p$-adic $L$-function, when multiplied by an auxiliary Euler factor, can be written as an infinite sum. We shall establish such expressions without restriction on $p$, and without the Euler factor when the character is non-trivial, by computing the periods of appropriate measures. As an application, we will reprove the Ferrero–Greenberg formula for the derivative $L_p'(0,\chi )$. We will also discuss the convergence of sum expressions in terms of elementary $p$-adic analysis, as well as their relation to Stickelberger elements; such discussions in turn give alternative proofs of the validity of sum expressions.
We establish the mean convergence for multiple ergodic averages with iterates given by distinct fractional powers of primes and related multiple recurrence results. A consequence of our main result is that every set of integers with positive upper density contains patterns of the form
$\{m,m+[p_n^a], m+[p_n^b]\}$
, where
$a,b$
are positive nonintegers and
$p_n$
denotes the nth prime, a property that fails if a or b is a natural number. Our approach is based on a recent criterion for joint ergodicity of collections of sequences, and the bulk of the proof is devoted to obtaining good seminorm estimates for the related multiple ergodic averages. The input needed from number theory are upper bounds for the number of prime k-tuples that follow from elementary sieve theory estimates and equidistribution results of fractional powers of primes in the circle.
We use the method of Bruinier–Raum to show that symmetric formal Fourier–Jacobi series, in the cases of norm-Euclidean imaginary quadratic fields, are Hermitian modular forms. Consequently, combining a theorem of Yifeng Liu, we deduce Kudla’s conjecture on the modularity of generating series of special cycles of arbitrary codimension for unitary Shimura varieties defined in these cases.
A new reciprocity formula for Dirichlet L-functions associated to an arbitrary primitive Dirichlet character of prime modulus q is established. We find an identity relating the fourth moment of individual Dirichlet L-functions in the t-aspect to the cubic moment of central L-values of Hecke–Maaß newforms of level at most
$q^{2}$
and primitive central character
$\psi ^{2}$
averaged over all primitive nonquadratic characters
$\psi $
modulo q. Our formula can be thought of as a reverse version of recent work of Petrow–Young. Direct corollaries involve a variant of Iwaniec’s short interval fourth moment bound and the twelfth moment bound for Dirichlet L-functions, which generalise work of Jutila and Heath-Brown, respectively. This work traverses an intersection of classical analytic number theory and automorphic forms.
Let n and k be positive integers with
$n\ge k+1$
and let
$\{a_i\}_{i=1}^n$
be a strictly increasing sequence of positive integers. Let
$S_{n, k}:=\sum _{i=1}^{n-k} {1}/{\mathrm {lcm}(a_{i},a_{i+k})}$
. In 1978, Borwein [‘A sum of reciprocals of least common multiples’, Canad. Math. Bull.20 (1978), 117–118] confirmed a conjecture of Erdős by showing that
$S_{n,1}\le 1-{1}/{2^{n-1}}$
. Hong [‘A sharp upper bound for the sum of reciprocals of least common multiples’, Acta Math. Hungar.160 (2020), 360–375] improved Borwein’s upper bound to
$S_{n,1}\le {a_{1}}^{-1}(1-{1}/{2^{n-1}})$
and derived optimal upper bounds for
$S_{n,2}$
and
$S_{n,3}$
. In this paper, we present a sharp upper bound for
$S_{n,4}$
and characterise the sequences
$\{a_i\}_{i=1}^n$
for which the upper bound is attained.
We prove that analogues of the Hardy–Littlewood generalised twin prime conjecture for almost primes hold on average. Our main theorem establishes an asymptotic formula for the number of integers
$n=p_1p_2 \leq X$
such that
$n+h$
is a product of exactly two primes which holds for almost all
$|h|\leq H$
with
$\log^{19+\varepsilon}X\leq H\leq X^{1-\varepsilon}$
, under a restriction on the size of one of the prime factors of n and
$n+h$
. Additionally, we consider correlations
$n,n+h$
where n is a prime and
$n+h$
has exactly two prime factors, establishing an asymptotic formula which holds for almost all
$|h| \leq H$
with
$X^{1/6+\varepsilon}\leq H\leq X^{1-\varepsilon}$
.
Let K be a number field. For which primes p does there exist an elliptic curve
$E / K$
admitting a K-rational p-isogeny? Although we have an answer to this question over the rationals, extending this to other number fields is a fundamental open problem in number theory. In this paper, we study this question in the case that K is a quadratic field, subject to the assumption that E is semistable at the primes of K above p. We prove results both for families of quadratic fields and for specific quadratic fields.
The purpose of this paper is to extend the explicit geometric evaluation of semisimple orbital integrals for smooth kernels for the Casimir operator obtained by the first author to the case of kernels for arbitrary elements in the center of the enveloping algebra.
When is an ideal of a ring radical or prime? By examining its generators, one may in many cases definably and uniformly test the ideal’s properties. We seek to establish such definable formulas in rings of p-adic power series, such as
$\mathbb Q_{p}\langle X\rangle $
,
$\mathbb Z_{p}\langle X\rangle $
, and related rings of power series over more general valuation rings and their fraction fields. We obtain a definable, uniform test for radicality, and, in the one-dimensional case, for primality. This builds upon the techniques stemming from the proof of the quantifier elimination results for the analytic theory of the p-adic integers by Denef and van den Dries, and the linear algebra methods of Hermann and Seidenberg.