We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let
$p_t(a,b;n)$
denote the number of partitions of n such that the number of t-hooks is congruent to
$a \bmod {b}$
. For
$t\in \{2, 3\}$
, arithmetic progressions
$r_1 \bmod {m_1}$
and
$r_2 \bmod {m_2}$
on which
$p_t(r_1,m_1; m_2 n + r_2)$
vanishes were established in recent work by Bringmann, Craig, Males and Ono [‘Distributions on partitions arising from Hilbert schemes and hook lengths’, Forum Math. Sigma10 (2022), Article no. e49] using the theory of modular forms. Here we offer a direct combinatorial proof of this result using abaci and the theory of t-cores and t-quotients.
We discuss the
$\ell $
-adic case of Mazur’s ‘Program B’ over
$\mathbb {Q}$
: the problem of classifying the possible images of
$\ell $
-adic Galois representations attached to elliptic curves E over
$\mathbb {Q}$
, equivalently, classifying the rational points on the corresponding modular curves. The primes
$\ell =2$
and
$\ell \ge 13$
are addressed by prior work, so we focus on the remaining primes
$\ell = 3, 5, 7, 11$
. For each of these
$\ell $
, we compute the directed graph of arithmetically maximal
$\ell $
-power level modular curves
$X_H$
, compute explicit equations for all but three of them and classify the rational points on all of them except
$X_{\mathrm {ns}}^{+}(N)$
, for
$N = 27, 25, 49, 121$
and two-level
$49$
curves of genus
$9$
whose Jacobians have analytic rank
$9$
.
Aside from the
$\ell $
-adic images that are known to arise for infinitely many
${\overline {\mathbb {Q}}}$
-isomorphism classes of elliptic curves
$E/\mathbb {Q}$
, we find only 22 exceptional images that arise for any prime
$\ell $
and any
$E/\mathbb {Q}$
without complex multiplication; these exceptional images are realised by 20 non-CM rational j-invariants. We conjecture that this list of 22 exceptional images is complete and show that any counterexamples must arise from unexpected rational points on
$X_{\mathrm {ns}}^+(\ell )$
with
$\ell \ge 19$
, or one of the six modular curves noted above. This yields a very efficient algorithm to compute the
$\ell $
-adic images of Galois for any elliptic curve over
$\mathbb {Q}$
.
In an appendix with John Voight, we generalise Ribet’s observation that simple abelian varieties attached to newforms on
$\Gamma _1(N)$
are of
$\operatorname {GL}_2$
-type; this extends Kolyvagin’s theorem that analytic rank zero implies algebraic rank zero to isogeny factors of the Jacobian of
$X_H$
.
Let
$\alpha $
be a totally positive algebraic integer of degree d, with conjugates
$\alpha _1=\alpha , \alpha _2, \ldots , \alpha _d$
. The absolute
$S_k$
-measure of
$\alpha $
is defined by
$s_k(\alpha )= d^{-1} \sum _{i=1}^{d}\alpha _i^k$
. We compute the lower bounds
$\upsilon _k$
of
$s_k(\alpha )$
for each integer in the range
$2\leq k \leq 15$
and give a conjecture on the results for integers
$k>15$
. Then we derive the lower bounds of
$s_k(\alpha )$
for all real numbers
$k>2$
. Our computation is based on an improvement in the application of the LLL algorithm and analysis of the polynomials in the explicit auxiliary functions.
We establish the optimal order of Malliavin-type remainders in the asymptotic density approximation formula for Beurling generalized integers. Given $\alpha \in (0,1]$ and $c>0$ (with $c\leq 1$ if $\alpha =1$), a generalized number system is constructed with Riemann prime counting function $ \Pi (x)= \operatorname {\mathrm {Li}}(x)+ O(x\exp (-c \log ^{\alpha } x ) +\log _{2}x), $ and whose integer counting function satisfies the extremal oscillation estimate $N(x)=\rho x + \Omega _{\pm }(x\exp (- c'(\log x\log _{2} x)^{\frac {\alpha }{\alpha +1}})$ for any $c'>(c(\alpha +1))^{\frac {1}{\alpha +1}}$, where $\rho>0$ is its asymptotic density. In particular, this improves and extends upon the earlier work [Adv. Math. 370 (2020), Article 107240].
Dirichlet’s theorem, including the uniform setting and asymptotic setting, is one of the most fundamental results in Diophantine approximation. The improvement of the asymptotic setting leads to the well-approximable set (in words of continued fractions)
$$ \begin{align*} \mathcal{K}(\Phi):=\{x:a_{n+1}(x)\ge\Phi(q_{n}(x))\ \textrm{for infinitely many }n\in \mathbb{N}\}; \end{align*} $$
the improvement of the uniform setting leads to the Dirichlet non-improvable set
$$ \begin{align*} \mathcal{G}(\Phi):=\{x:a_{n}(x)a_{n+1}(x)\ge\Phi(q_{n}(x))\ \textrm{for infinitely many }n\in \mathbb{N}\}. \end{align*} $$
Surprisingly, as a proper subset of Dirichlet non-improvable set, the well-approximable set has the same s-Hausdorff measure as the Dirichlet non-improvable set. Nevertheless, one can imagine that these two sets should be very different from each other. Therefore, this paper is aimed at a detailed analysis on how the growth speed of the product of two-termed partial quotients affects the Hausdorff dimension compared with that of single-termed partial quotients. More precisely, let
$\Phi _{1},\Phi _{2}:[1,+\infty )\rightarrow \mathbb {R}^{+}$
be two non-decreasing positive functions. We focus on the Hausdorff dimension of the set
$\mathcal {G}(\Phi _{1})\!\setminus\! \mathcal {K}(\Phi _{2})$
. It is known that the dimensions of
$\mathcal {G}(\Phi )$
and
$\mathcal {K}(\Phi )$
depend only on the growth exponent of
$\Phi $
. However, rather different from the current knowledge, it will be seen in some cases that the dimension of
$\mathcal {G}(\Phi _{1})\!\setminus\! \mathcal {K}(\Phi _{2})$
will change greatly even slightly modifying
$\Phi _1$
by a constant.
There has been recent interest in a hybrid form of the celebrated conjectures of Hardy–Littlewood and of Chowla. We prove that for any $k,\ell \ge 1$ and distinct integers $h_2,\ldots ,h_k,a_1,\ldots ,a_\ell $, we have:
for all except $o(H)$ values of $h_1\leq H$, so long as $H\geq (\log X)^{\ell +\varepsilon }$. This improves on the range $H\ge (\log X)^{\psi (X)}$, $\psi (X)\to \infty $, obtained in previous work of the first author. Our results also generalise from the Möbius function $\mu $ to arbitrary (non-pretentious) multiplicative functions.
We derive a q-supercongruence modulo the third power of a cyclotomic polynomial with the help of Guo and Zudilin’s method of creative microscoping [‘A q-microscope for supercongruences’, Adv. Math.346 (2019), 329–358] and the q-Dixon formula. As consequences, we give several supercongruences including
We show that there is a red-blue colouring of $[N]$ with no blue 3-term arithmetic progression and no red arithmetic progression of length $e^{C(\log N)^{3/4}(\log \log N)^{1/4}}$. Consequently, the two-colour van der Waerden number $w(3,k)$ is bounded below by $k^{b(k)}$, where $b(k) = c \big ( \frac {\log k}{\log \log k} \big )^{1/3}$. Previously it had been speculated, supported by data, that $w(3,k) = O(k^2)$.
Recently, Lin and Liu [‘Congruences for the truncated Appell series
$F_3$
and
$F_4$
’, Integral Transforms Spec. Funct.31(1) (2020), 10–17] confirmed a supercongruence on the truncated Appell series
$F_3$
. Motivated by their work, we give a generalisation of this supercongruence by establishing a q-supercongruence modulo the fourth power of a cyclotomic polynomial.
For a positive integer n, let
$\mathcal T(n)$
denote the set of all integers greater than or equal to n. A sum of generalised m-gonal numbers g is called tight
$\mathcal T(n)$
-universal if the set of all nonzero integers represented by g is equal to
$\mathcal T(n)$
. We prove the existence of a minimal tight
$\mathcal T(n)$
-universality criterion set for a sum of generalised m-gonal numbers for any pair
$(m,n)$
. To achieve this, we introduce an algorithm giving all candidates for tight
$\mathcal T(n)$
-universal sums of generalised m-gonal numbers. Furthermore, we provide some experimental results on the classification of tight
$\mathcal T(n)$
-universal sums of generalised m-gonal numbers.
We call a packing of hyperspheres in n dimensions an Apollonian sphere packing if the spheres intersect tangentially or not at all; they fill the n-dimensional Euclidean space; and every sphere in the packing is a member of a cluster of
$n+2$
mutually tangent spheres (and a few more properties described herein). In this paper, we describe an Apollonian packing in eight dimensions that naturally arises from the study of generic nodal Enriques surfaces. The
$E_7$
,
$E_8$
and Reye lattices play roles. We use the packing to generate an Apollonian packing in nine dimensions, and a cross section in seven dimensions that is weakly Apollonian. Maxwell described all three packings but seemed unaware that they are Apollonian. The packings in seven and eight dimensions are different than those found in an earlier paper. In passing, we give a sufficient condition for a Coxeter graph to generate mutually tangent spheres and use this to identify an Apollonian sphere packing in three dimensions that is not the Soddy sphere packing.
Adjacent dyadic systems are pivotal in analysis and related fields to study continuous objects via collections of dyadic ones. In our prior work (joint with Jiang, Olson, and Wei), we describe precise necessary and sufficient conditions for two dyadic systems on the real line to be adjacent. Here, we extend this work to all dimensions, which turns out to have many surprising difficulties due to the fact that $d+1$, not $2^d$, grids is the optimal number in an adjacent dyadic system in $\mathbb {R}^d$. As a byproduct, we show that a collection of $d+1$ dyadic systems in $\mathbb {R}^d$ is adjacent if and only if the projection of any two of them onto any coordinate axis are adjacent on $\mathbb {R}$. The underlying geometric structures that arise in this higher-dimensional generalization are interesting objects themselves, ripe for future study; these lead us to a compact, geometric description of our main result. We describe these structures, along with what adjacent dyadic (and n-adic, for any n) systems look like, from a variety of contexts, relating them to previous work, as well as illustrating a specific exa.
We formulate a strengthening of the Zariski dense orbit conjecture for birational maps of dynamical degree one. So, given a quasiprojective variety X defined over an algebraically closed field K of characteristic
$0$
, endowed with a birational self-map
$\phi $
of dynamical degree
$1$
, we expect that either there exists a nonconstant rational function
$f:X\dashrightarrow \mathbb {P} ^1$
such that
$f\circ \phi =f$
, or there exists a proper subvariety
$Y\subset X$
with the property that, for any invariant proper subvariety
$Z\subset X$
, we have that
$Z\subseteq Y$
. We prove our conjecture for automorphisms
$\phi $
of dynamical degree
$1$
of semiabelian varieties X. Moreover, we prove a related result for regular dominant self-maps
$\phi $
of semiabelian varieties X: assuming that
$\phi $
does not preserve a nonconstant rational function, we have that the dynamical degree of
$\phi $
is larger than
$1$
if and only if the union of all
$\phi $
-invariant proper subvarieties of X is Zariski dense. We give applications of our results to representation-theoretic questions about twisted homogeneous coordinate rings associated with abelian varieties.
Let $p$ be a rational prime, let $F$ denote a finite, unramified extension of ${{\mathbb {Q}}}_p$, let $K$ be the maximal unramified extension of ${{\mathbb {Q}}}_p$, ${{\overline {K}}}$ some fixed algebraic closure of $K$, and ${{\mathbb {C}}}_p$ be the completion of ${{\overline {K}}}$. Let $G_F$ be the absolute Galois group of $F$. Let $A$ be an abelian variety defined over $F$, with good reduction. Classically, the Fontaine integral was seen as a Hodge–Tate comparison morphism, i.e. as a map $\varphi _{A} \otimes 1_{{{\mathbb {C}}}_p}\colon T_p(A)\otimes _{{{\mathbb {Z}}}_p}{{\mathbb {C}}}_p\to \operatorname {Lie}(A)(F)\otimes _F{{\mathbb {C}}}_p(1)$, and as such it is surjective and has a large kernel. This paper starts with the observation that if we do not tensor $T_p(A)$ with ${{\mathbb {C}}}_p$, then the Fontaine integral is often injective. In particular, it is proved that if $T_p(A)^{G_K} = 0$, then $\varphi _A$ is injective. As an application, we extend the Fontaine integral to a perfectoid like universal cover of $A$ and show that if $T_p(A)^{G_K} = 0$, then $A(\overline {K})$ has a type of $p$-adic uniformization, which resembles the classical complex uniformization.
We show that the theory of Galois actions of a torsion Abelian group A is companionable if and only if, for each prime p, the p-primary part of A is either finite or it coincides with the Prüfer p-group. We also provide a model-theoretic description of the model companions we obtain.
Recent works at the interface of algebraic combinatorics, algebraic geometry, number theory and topology have provided new integer-valued invariants on integer partitions. It is natural to consider the distribution of partitions when sorted by these invariants in congruence classes. We consider the prominent situations that arise from extensions of the Nekrasov–Okounkov hook product formula and from Betti numbers of various Hilbert schemes of n points on
${\mathbb {C}}^2$
. For the Hilbert schemes, we prove that homology is equidistributed as
$n\to \infty $
. For t-hooks, we prove distributions that are often not equidistributed. The cases where
$t\in \{2, 3\}$
stand out, as there are congruence classes where such counts are zero. To obtain these distributions, we obtain analytic results of independent interest. We determine the asymptotics, near roots of unity, of the ubiquitous infinite products
Let
$\mathcal {C}_n =\left [\chi _{\lambda }(\mu )\right ]_{\lambda , \mu }$
be the character table for
$S_n,$
where the indices
$\lambda $
and
$\mu $
run over the
$p(n)$
many integer partitions of
$n.$
In this note, we study
$Z_{\ell }(n),$
the number of zero entries
$\chi _{\lambda }(\mu )$
in
$\mathcal {C}_n,$
where
$\lambda $
is an
$\ell $
-core partition of
$n.$
For every prime
$\ell \geq 5,$
we prove an asymptotic formula of the form
where
$\sigma _{\ell }(n)$
is a twisted Legendre symbol divisor function,
$\delta _{\ell }:=(\ell ^2-1)/24,$
and
$1/\alpha _{\ell }>0$
is a normalization of the Dirichlet L-value
$L\left (\left ( \frac {\cdot }{\ell } \right ),\frac {\ell -1}{2}\right ).$
For primes
$\ell $
and
$n>\ell ^6/24,$
we show that
$\chi _{\lambda }(\mu )=0$
whenever
$\lambda $
and
$\mu $
are both
$\ell $
-cores. Furthermore, if
$Z^*_{\ell }(n)$
is the number of zero entries indexed by two
$\ell $
-cores, then, for
$\ell \geq 5$
, we obtain the asymptotic
Let G be a p-adic classical group. The representations in a given Bernstein component can be viewed as modules for the corresponding Hecke algebra—the endomorphism algebra of a pro-generator of the given component. Using Heiermann’s construction of these algebras, we describe the Bernstein components of the Gelfand–Graev representation for $G=\mathrm {SO}(2n+1)$, $\mathrm {Sp}(2n)$, and $\mathrm {O}(2n)$.
In this paper, we prove results about solutions of the Diophantine equation $x^p+y^p=z^3$ over various number fields using the modular method. First, by assuming some standard modularity conjecture, we prove an asymptotic result for general number fields of narrow class number one satisfying some technical conditions. Second, we show that there is an explicit bound such that the equation $x^p+y^p=z^3$ does not have a particular type of solution over $K=\mathbb {Q}(\sqrt {-d})$, where $d=1,7,19,43,67$ whenever p is bigger than this bound. During the course of the proof, we prove various results about the irreducibility of Galois representations, image of inertia groups, and Bianchi newforms.