To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The article deals with isometric dilation and commutant lifting for a class of n-tuples $(n\ge 3)$ of commuting contractions. We show that operator tuples in the class dilate to tuples of commuting isometries of BCL type. As a consequence of such an explicit dilation, we show that their von Neumann inequality holds on a one-dimensional variety of the closed unit polydisc. On the basis of such a dilation, we prove a commutant lifting theorem of Sarason’s type by establishing that every commutant can be lifted to the dilation space in a commuting and norm-preserving manner. This further leads us to find yet another class of n-tuples $(n\ge 3)$ of commuting contractions each of which possesses isometric dilation.
Let $\mathcal H$ be a complex, separable Hilbert space, and set . When $\dim \, \mathcal H$ is finite, we characterise the set and its norm-closure . In the infinite-dimensional setting, we characterise the intersection of with the set of biquasitriangular operators, and we exhibit an index obstruction to belonging to .
We investigate when the algebraic numerical range is a C-spectral set in a Banach algebra. While providing several counterexamples based on classical ideas as well as combinatorial Banach spaces, we discuss positive results for matrix algebras and provide an absolute constant in the case of complex $2\times 2$-matrices with the induced $1$-norm. Furthermore, we discuss positive results for infinite-dimensional Banach algebras, including the Calkin algebra.
In Dong et al. (2022, Journal of Operator Theory 88, 365–406), the authors addressed the question of whether surjective maps preserving the norm of a symmetric Kubo-Ando mean can be extended to Jordan $\ast $-isomorphisms. The question was affirmatively answered for surjective maps between the positive definite cones of unital $C^{*}$-algebras for certain specific classes of symmetric Kubo-Ando means. Here, we give a comprehensive answer to this question for surjective maps between the positive definite cones of $AW^{*}$-algebras preserving the norm of any symmetric Kubo-Ando mean.
In this paper, we study the cyclicity of the shift operator $S$ acting on a Banach space $\mathcal {X}$ of analytic functions on the open unit disc $\mathbb {D}$. We develop a general framework where a method based on a corona theorem can be used to show that if $f,g\in \mathcal {X}$ satisfy $|g(z)|\leq |f(z)|$, for every $z\in \mathbb {D}$, and if g is cyclic, then f is cyclic. We also give sufficient conditions for cyclicity in this context. This enable us to recapture some recent results obtained in de Branges–Rovnayk spaces, in Besov–Dirichlet spaces and in weighted Dirichlet type spaces.
This article explores the notions of $\mathcal {F}$-transitivity and topological $\mathcal {F}$-recurrence for backward shift operators on weighted $\ell ^p$-spaces and $c_0$-spaces on directed trees, where $\mathcal {F}$ represents a Furstenberg family of subsets of $\mathbb {N}_0$. In particular, we establish the equivalence between recurrence and hypercyclicity of these operators on unrooted directed trees. For rooted directed trees, a backward shift operator is hypercyclic if and only if it possesses an orbit of a bounded subset that is weakly dense.
In this paper, we study the ranges of the Schwartz space $\mathcal {S}$ and its dual $\mathcal {S}'$ (space of tempered distributions) under the Bargmann transform. The characterization of these two ranges leads to interesting reproducing kernel Hilbert spaces whose reproducing kernels can be expressed, respectively, in terms of the Touchard polynomials and the hypergeometric functions. We investigate the main properties of some associated operators and introduce two generalized Bargmann transforms in this framework. This can be considered as a continuation of an interesting research path that Neretin started earlier in his book on Gaussian integral operators.
We give sufficient conditions for the essential spectrum of the Hermitian square of a class of Hankel operators on the Bergman space of the polydisc to contain intervals. We also compute the spectrum in case the symbol is a monomial.
McCullough and Trent generalize Beurling–Lax–Halmos invariant subspace theorem for the shift on Hardy space of the unit disk to the multi-shift on Drury–Arveson space of the unit ball by representing an invariant subspace of the multi-shift as the range of a multiplication operator that is a partial isometry. By using their method, we obtain similar representations for a class of invariant subspaces of the multi-shifts on Hardy and Bergman spaces of the unit ball or polydisk. Our results are surprisingly general and include several important classes of invariant subspaces on the unit ball or polydisk.
In this paper, we study the embedding problem of an operator into a strongly continous semigroup. We obtain characterizations for some classes of operators, namely composition operators and analytic Toeplitz operators on the Hardy space $H^2$. In particular, we focus on the isometric ones using the necessary and sufficient condition observed by T. Eisner.
This article describes Hilbert spaces contractively contained in certain reproducing kernel Hilbert spaces of analytic functions on the open unit disc which are nearly invariant under division by an inner function. We extend Hitt’s theorem on nearly invariant subspaces of the backward shift operator on $H^2(\mathbb {D})$ as well as its many generalizations to the setting of de Branges spaces.
We characterize the compact elements and the hypocompact radical of a crossed product $C_0(X)\times _\phi \mathbb Z$, where X is a locally compact metrizable space and $\phi :X\rightarrow X$ is a homeomorphism, in terms of the corresponding dynamical system $(X,\phi )$.
We study the many-body localization (MBL) properties of the Heisenberg XXZ spin-$\frac 12$ chain in a random magnetic field. We prove that the system exhibits localization in any given energy interval at the bottom of the spectrum in a nontrivial region of the parameter space. This region, which includes weak interaction and strong disorder regimes, is independent of the size of the system and depends only on the energy interval. Our approach is based on the reformulation of the localization problem as an expression of quasi-locality for functions of the random many-body XXZ Hamiltonian. This allows us to extend the fractional moment method for proving localization, previously derived in a single-particle localization context, to the many-body setting.
Our primary result concerns the positivity of specific kernels constructed using the q-ultraspherical polynomials. In other words, it concerns a two-parameter family of bivariate, compactly supported distributions. Moreover, this family has a property that all its conditional moments are polynomials in the conditioning random variable. The significance of this result is evident for individuals working on distribution theory, orthogonal polynomials, q-series theory, and the so-called quantum polynomials. Therefore, it may have a limited number of interested researchers. That is why, we put our results into a broader context. We recall the theory of Hilbert–Schmidt operators and the idea of Lancaster expansions (LEs) of the bivariate distributions absolutely continuous with respect to the product of their marginal distributions. Applications of LE can be found in Mathematical Statistics or the creation of Markov processes with polynomial conditional moments (the most well-known of these processes is the famous Wiener process).
Let µ be a finite positive Borelmeasure on $[0,1)$ and $\alpha \gt -1$. The generalized integral operator of Hilbert type $\mathcal {I}_{\mu_{\alpha+1}}$ is defined on the spaces $H(\mathbb{D})$ of analytic functions in the unit disc $\mathbb{D}$ as follows:
In this paper, we give a unified characterization of the measures µ for which the operator $\mathcal {I}_{\mu_{\alpha+1}}$ is bounded from the Bloch space to a Bergman space for all $\alpha \gt -1$. Additionally, we also investigate the action of $\mathcal {I}_{\mu_{\alpha+1}}$ from the Bloch space to the Hardy spaces and the Besov spaces.
acting on a number of important analytic function spaces on $\mathbb{D}$, where µ is a positive finite Borel measure. The function spaces are some newly appeared analytic function spaces (e.g., Bergman–Morrey spaces $A^{p,\lambda}$ and Dirichlet–Morrey spaces $\mathcal{D}_p^{\lambda}$) . This work continues the lines of the previous characterizations by Blasco and Galanopoulos et al. for classical Hardy spaces and weighted Bergman spaces and so forth.
For commuting contractions $T_1,\dots,T_n$ acting on a Hilbert space $\mathscr{H}$ with $T=\prod_{i=1}^n T_i$, we find a necessary and sufficient condition such that $(T_1,\dots,T_n)$ dilates to a commuting tuple of isometries $(V_1,\dots,V_n)$ on the minimal isometric dilation space of T with $V=\prod_{i=1}^nV_i$ being the minimal isometric dilation of T. This isometric dilation provides a commutant lifting of $(T_1, \dots, T_n)$ on the minimal isometric dilation space of T. We construct both Schäffer and Sz. Nagy–Foias-type isometric dilations for $(T_1,\dots,T_n)$ on the minimal dilation spaces of T. Also, a different dilation is constructed when the product T is a $C._0$ contraction, that is, ${T^*}^n \rightarrow 0$ as $n \rightarrow \infty$. As a consequence of these dilation theorems, we obtain different functional models for $(T_1,\dots,T_n)$ in terms of multiplication operators on vectorial Hardy spaces. One notable fact about our models is that the multipliers are all analytic functions in one variable. The dilation when T is a $C._0$ contraction leads to a conditional factorization of T. Several examples have been constructed.
We present a new proof of the compactness of bilinear paraproducts with CMO symbols. By drawing an analogy to compact linear operators, we first explore further properties of compact bilinear operators on Banach spaces and present examples. We then prove compactness of bilinear paraproducts with CMO symbols by combining one of the properties of compact bilinear operators thus obtained with vanishing Carleson measure estimates and interpolation of bilinear compactness.
We consider continuous ${\mathrm {SL}}(2,{\mathbb R})$ valued cocycles over general dynamical systems and discuss a variety of uniformity notions. In particular, we provide a description of uniform one-parameter families of continuous ${\mathrm {SL}}(2,{\mathbb R})$ cocycles as $G_\delta $-sets. These results are then applied to Schrödinger operators with dynamically defined potentials. In the case where the base dynamics is given by a subshift satisfying the Boshernitzan condition, we show that for a generic continuous sampling function, the associated Schrödinger cocycles are uniform for all energies and, in the aperiodic case, the spectrum is a Cantor set of zero Lebesgue measure.
We develop a new method suitable for establishing lower bounds on the ball measure of noncompactness of operators acting between considerably general quasinormed function spaces. This new method removes some of the restrictions oft-presented in the previous work. Most notably, the target function space need not be disjointly superadditive nor equipped with a norm. Instead, a property that is far more often at our disposal is exploited—namely the absolute continuity of the target quasinorm.
We use this new method to prove that limiting Sobolev embeddings into spaces of Brezis–Wainger type are so-called maximally noncompact, i.e. their ball measure of noncompactness is the worst possible.