To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper is inspired by a class of infinite order differential operators arising in quantum mechanics. They turned out to be an important tool in the investigation of evolution of superoscillations with respect to quantum fields equations. Infinite order differential operators act naturally on spaces of holomorphic functions or on hyperfunctions. Recently, infinite order differential operators have been considered and characterized on the spaces of entire monogenic functions, i.e. functions that are in the kernel of the Dirac operators. The focus of this paper is the characterization of infinite order differential operators that act continuously on a different class of hyperholomorphic functions, called slice hyperholomorphic functions with values in a Clifford algebra or also slice monogenic functions. This function theory has a very reach associated spectral theory and both the function theory and the operator theory in this setting are subjected to intensive investigations. Here we introduce the concept of proximate order and establish some fundamental properties of entire slice monogenic functions that are crucial for the characterization of infinite order differential operators acting on entire slice monogenic functions.
We show that properties of pairs of finite, positive, and regular Borel measures on the complex unit circle such as domination, absolute continuity, and singularity can be completely described in terms of containment and intersection of their reproducing kernel Hilbert spaces of “Cauchy transforms” in the complex unit disk. This leads to a new construction of the classical Lebesgue decomposition and proof of the Radon–Nikodym theorem using reproducing kernel theory and functional analysis.
We are interested in the optimal growth in terms of Lp-averages of hypercyclic and $\mathcal{U}$-frequently hypercyclic functions for some weighted Taylor shift operators acting on the space of analytic functions on the unit disc. We unify the results obtained by considering intermediate notions of upper frequent hypercyclicity between $\mathcal{U}$-frequent hypercyclicity and hypercyclicity.
We introduce and study Dirichlet-type spaces $\mathcal D(\mu _1, \mu _2)$ of the unit bidisc $\mathbb D^2,$ where $\mu _1, \mu _2$ are finite positive Borel measures on the unit circle. We show that the coordinate functions $z_1$ and $z_2$ are multipliers for $\mathcal D(\mu _1, \mu _2)$ and the complex polynomials are dense in $\mathcal D(\mu _1, \mu _2).$ Further, we obtain the division property and solve Gleason’s problem for $\mathcal D(\mu _1, \mu _2)$ over a bidisc centered at the origin. In particular, we show that the commuting pair $\mathscr M_z$ of the multiplication operators $\mathscr M_{z_1}, \mathscr M_{z_2}$ on $\mathcal D(\mu _1, \mu _2)$ defines a cyclic toral $2$-isometry and $\mathscr M^*_z$ belongs to the Cowen–Douglas class $\mathbf {B}_1(\mathbb D^2_r)$ for some $r>0.$ Moreover, we formulate a notion of wandering subspace for commuting tuples and use it to obtain a bidisc analog of Richter’s representation theorem for cyclic analytic $2$-isometries. In particular, we show that a cyclic analytic toral $2$-isometric pair T with cyclic vector $f_0$ is unitarily equivalent to $\mathscr M_z$ on $\mathcal D(\mu _1, \mu _2)$ for some $\mu _1,\mu _2$ if and only if $\ker T^*,$ spanned by $f_0,$ is a wandering subspace for $T.$
We consider the range inclusion and the diagonalization in the Jordan algebra $\mathcal {S}_C$ of C-symmetric operators, that are, bounded linear operators T satisfying $CTC =T^{*}$, where C is a conjugation on a separable complex Hilbert space $\mathcal H$. For $T\in \mathcal {S}_C$, we aim to describe the set $C_{\mathcal {R}(T)}$ of those operators $A\in \mathcal {S}_C$ satisfying the range inclusion $\mathcal {R}(A)\subset \mathcal {R}(T)$. It is proved that (i) $C_{\mathcal {R}(T)}=T\mathcal {S}_C T$ if and only if $\mathcal {R}(T)$ is closed, (ii) $\overline {C_{\mathcal {R}(T)}}=\overline {T\mathcal {S}_C T}$, and (iii) $C_{\overline {\mathcal {R}(T)}}$ is the closure of $C_{\mathcal {R}(T)}$ in the strong operator topology. Also, we extend the classical Weyl–von Neumann Theorem to $\mathcal {S}_C$, showing that every self-adjoint operator in $\mathcal {S}_C$ is the sum of a diagonal operator in $\mathcal {S}_C$ and a compact operator with arbitrarily small Schatten p-norm for $p\in (1,\infty )$.
In this paper, we apply the theory of algebraic cohomology to study the amenability of Thompson’s group $\mathcal {F}$. We introduce the notion of unique factorization semigroup which contains Thompson’s semigroup $\mathcal {S}$ and the free semigroup $\mathcal {F}_n$ on n ($\geq 2$) generators. Let $\mathfrak {B}(\mathcal {S})$ and $\mathfrak {B}(\mathcal {F}_n)$ be the Banach algebras generated by the left regular representations of $\mathcal {S}$ and $\mathcal {F}_n$, respectively. We prove that all derivations on $\mathfrak {B}(\mathcal {S})$ and $\mathfrak {B}(\mathcal {F}_n)$ are automatically continuous, and every derivation on $\mathfrak {B}(\mathcal {S})$ is induced by a bounded linear operator in $\mathcal {L}(\mathcal {S})$, the weak-operator closed Banach algebra consisting of all bounded left convolution operators on $l^2(\mathcal {S})$. Moreover, we prove that the first continuous Hochschild cohomology group of $\mathfrak {B}(\mathcal {S})$ with coefficients in $\mathcal {L}(\mathcal {S})$ vanishes. These conclusions provide positive indications for the left amenability of Thompson’s semigroup.
Wigner’s theorem characterizes isometries of the set of all rank one projections on a Hilbert space. In metric geometry, nonexpansive maps and noncontractive maps are well-studied generalizations of isometries. We show that under certain conditions Wigner symmetries can be characterized as nonexpansive or noncontractive maps on the set of all projections of rank one. The assumptions required for such characterizations are injectivity or surjectivity and they differ in the finite and the infinite-dimensional case. Motivated by a recently obtained optimal version of Uhlhorn’s generalization of Wigner’s theorem, we also give a description of nonexpansive maps which satisfy a condition that is much weaker than surjectivity. Such maps do not need to be Wigner symmetries. The optimality of all presented results is shown by counterexamples.
Consider the multiplication operator MB in $L^2(\mathbb{T})$, where the symbol B is a finite Blaschke product. In this article, we characterize the commutant of MB in $L^2(\mathbb{T})$. As an application of this characterization result, we explicitly determine the class of conjugations commuting with $M_{z^2}$ or making $M_{z^2}$ complex symmetric by introducing a new class of conjugations in $L^2(\mathbb{T})$. Moreover, we analyse their properties while keeping the whole Hardy space, model space and Beurling-type subspaces invariant. Furthermore, we extended our study concerning conjugations in the case of finite Blaschke products.
Let Σ be a σ-algebra of subsets of a set Ω and $B(\Sigma)$ be the Banach space of all bounded Σ-measurable scalar functions on Ω. Let $\tau(B(\Sigma),ca(\Sigma))$ denote the natural Mackey topology on $B(\Sigma)$. It is shown that a linear operator T from $B(\Sigma)$ to a Banach space E is Bochner representable if and only if T is a nuclear operator between the locally convex space $(B(\Sigma),\tau(B(\Sigma),ca(\Sigma)))$ and the Banach space E. We derive a formula for the trace of a Bochner representable operator $T:B({\cal B} o)\rightarrow B({\cal B} o)$ generated by a function $f\in L^1({\cal B} o, C(\Omega))$, where Ω is a compact Hausdorff space.
The present paper deals with the non-real eigenvalues for singular indefinite Sturm–Liouville problems. The lower bounds on non-real eigenvalues for this singular problem associated with a special separated boundary condition are obtained.
Let H be a complex separable Hilbert space with $\dim H \geq 2$. Let $\mathcal {N}$ be a nest on H such that $E_+ \neq E$ for any $E \neq H, E \in \mathcal {N}$. We prove that every 2-local isometry of $\operatorname {Alg}\mathcal {N}$ is a surjective linear isometry.
We study monotone operators in reflexive Banach spaces that are invariant with respect to a group of suitable isometric isomorphisms, and we show that they always admit a maximal extension which preserves the same invariance. A similar result applies to Lipschitz maps in Hilbert spaces, thus providing an invariant version of Kirszbraun–Valentine extension theorem. We then provide a relevant application to the case of monotone operators in $L^{p}$-spaces of random variables which are invariant with respect to measure-preserving isomorphisms, proving that they always admit maximal dissipative extensions which are still invariant by measure-preserving isomorphisms. We also show that such operators are law invariant, a much stronger property which is also inherited by their resolvents, the Moreau–Yosida approximations, and the associated semigroup of contractions. These results combine explicit representation formulae for the maximal extension of a monotone operator based on self-dual Lagrangians and a refined study of measure-preserving maps in standard Borel spaces endowed with a nonatomic measure, with applications to the approximation of arbitrary couplings between measures by sequences of maps.
Determining the range of complex maps plays a fundamental role in the study of several complex variables and operator theory. In particular, one is often interested in determining when a given holomorphic function is a self-map of the unit ball. In this paper, we discuss a class of maps in $\mathbb {C}^N$ that generalize linear fractional maps. We then proceed to determine precisely when such a map is a self-map of the unit ball. In particular, we take a novel approach, obtaining numerous new results about this class of maps along the way.
We study hermitian operators and isometries on spaces of vector-valued Lipschitz maps with the sum norm. There are two main theorems in this paper. Firstly, we prove that every hermitian operator on $\operatorname {Lip}(X,E)$, where E is a complex Banach space, is a generalized composition operator. Secondly, we give a complete description of unital surjective complex linear isometries on $\operatorname {Lip}(X,\mathcal {A})$, where $\mathcal {A}$ is a unital factor $C^{*}$-algebra. These results improve previous results stated by the author.
We study the relationship between weak* Dunford–Pettis and weakly (resp. M-weakly, order weakly, almost M-weakly, and almost L-weakly) operators on Banach lattices. The following is one of the major results dealing with this matter: If E and F are Banach lattices such that F is Dedekind $\sigma $-complete, then each positive weak* Dunford–Pettis operator $T:E\rightarrow F$ is weakly compact if and only if one of the following assertions is valid: (a) the norms of $E^{\prime }$ and F are order continuous; (b) E is reflexive; and (c) F is reflexive.
In this paper, we consider absorbing Markov chains $X_n$ admitting a quasi-stationary measure $\mu $ on M where the transition kernel ${\mathcal P}$ admits an eigenfunction $0\leq \eta \in L^1(M,\mu )$. We find conditions on the transition densities of ${\mathcal P}$ with respect to $\mu $ which ensure that $\eta (x) \mu (\mathrm {d} x)$ is a quasi-ergodic measure for $X_n$ and that the Yaglom limit converges to the quasi-stationary measure $\mu $-almost surely. We apply this result to the random logistic map $X_{n+1} = \omega _n X_n (1-X_n)$ absorbed at ${\mathbb R} \setminus [0,1],$ where $\omega _n$ is an independent and identically distributed sequence of random variables uniformly distributed in $[a,b],$ for $1\leq a <4$ and $b>4.$
In this article, the question of whether the Löwner partial order on the positive cone of an operator algebra is determined by the norm of any arbitrary Kubo–Ando mean is studied. The question was affirmatively answered for certain classes of Kubo–Ando means, yet the general case was left as an open problem. We here give a complete answer to this question, by showing that the norm of every symmetric Kubo–Ando mean is order-determining, i.e., if $A,B\in \mathcal B(H)^{++}$ satisfy $\Vert A\sigma X\Vert \le \Vert B\sigma X\Vert $ for every $X\in \mathcal {A}^{{++}}$, where $\mathcal A$ is the C*-subalgebra generated by $B-A$ and I, then $A\le B$.
First we give a counterexample showing that recent results on separate order continuity of Arens extensions of multilinear operators cannot be improved to get separate order continuity on the product of the whole of the biduals. Then we establish conditions on the operators and/or on the underlying Riesz spaces/Banach lattices so that the extensions are order continuous on the product of the whole biduals. We also prove that all Arens extensions of any regular multilinear operator are order continuous in at least one variable and we study when Arens extensions of regular homogeneous polynomials on a Banach lattice $E$ are order continuous on $E^{**}$.
For a bounded analytic function $\varphi $ on the unit disk $\mathbb {D}$ with $\|\varphi \|_\infty \le 1$, we consider the defect operators $D_\varphi $ and $D_{\overline \varphi }$ of the Toeplitz operators $T_{\overline \varphi }$ and $T_\varphi $, respectively, on the weighted Bergman space $A^2_\alpha $. The ranges of $D_\varphi $ and $D_{\overline \varphi }$, written as $H(\varphi )$ and $H(\overline \varphi )$ and equipped with appropriate inner products, are called sub-Bergman spaces.
We prove the following three results in the paper: for $-1<\alpha \le 0$, the space $H(\varphi )$ has a complete Nevanlinna–Pick kernel if and only if $\varphi $ is a Möbius map; for $\alpha>-1$, we have $H(\varphi )=H(\overline \varphi )=A^2_{\alpha -1}$ if and only if the defect operators $D_\varphi $ and $D_{\overline \varphi }$ are compact; and for $\alpha>-1$, we have $D^2_\varphi (A^2_\alpha )= D^2_{\overline \varphi }(A^2_\alpha )=A^2_{\alpha -2}$ if and only if $\varphi $ is a finite Blaschke product. In some sense, our restrictions on $\alpha $ here are best possible.
We consider Toeplitz determinants whose symbol has: (i) a one-cut regular potential $V$, (ii) Fisher–Hartwig singularities and (iii) a smooth function in the background. The potential $V$ is associated with an equilibrium measure that is assumed to be supported on the whole unit circle. For constant potentials $V$, the equilibrium measure is the uniform measure on the unit circle and our formulas reduce to well-known results for Toeplitz determinants with Fisher–Hartwig singularities. For non-constant $V$, our results appear to be new even in the case of no Fisher–Hartwig singularities. As applications of our results, we derive various statistical properties of a determinantal point process which generalizes the circular unitary ensemble.