To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper is concerned with the existence results for generalized transition waves of space periodic and time heterogeneous lattice Fisher-KPP equations. By constructing appropriate subsolutions and supersolutions, we show that there is a critical wave speed such that a transition wave solution exists as soon as the least mean of wave speed is above this critical speed. Moreover, the critical speed we construct is proved to be minimal in some particular cases, such as space-time periodic or space independent.
In this paper, we consider the monotone travelling wave solutions of a reaction–diffusion epidemic system with nonlocal delays. We obtain the existence of monotone travelling wave solutions by applying abstract existence results. By transforming the nonlocal delayed system to a non-delayed system and choosing suitable small positive constants to define a pair of new upper and lower solutions, we use the contraction technique to prove the asymptotic stability (up to translation) of monotone travelling waves. Furthermore, the uniqueness and Lyapunov stability of monotone travelling wave solutions will be established with the help of the upper and lower solution method and the exponential asymptotic stability.
In this paper, we study the controllability of second-order nonlinear stochastic delay systems driven by the Rosenblatt distributions in finite dimensional spaces. A set of sufficient conditions are established for controllability of nonlinear stochastic delay systems using fixed point theory, delayed sine and cosine matrices and delayed Grammian matrices. Furthermore, controllability results for second-order stochastic delay systems driven by Rosenblatt distributions via the representation of solution by delayed sine and cosine functions are presented. Finally, our theoretical results are illustrated through numerical simulation.
Taking into account the effects of patch structure and nonlinear density-dependent mortality terms, we explore a class of almost periodic Nicholson’s blowflies model in this paper. Employing the Lyapunov function method and differential inequality technique, some novel assertions are developed to guarantee the existence and exponential stability of positive almost periodic solutions for the addressed model, which generalize and refine the corresponding results in some recently published literatures. Particularly, an example and its numerical simulations are arranged to support the proposed approach.
We are revisiting the topic of travelling fronts for the food-limited (FL) model with spatio-temporal nonlocal reaction. These solutions are crucial for understanding the whole model dynamics. Firstly, we prove the existence of monotone wavefronts. In difference with all previous results formulated in terms of ‘sufficiently small parameters’, our existence theorem indicates a reasonably broad and explicit range of the model key parameters allowing the existence of monotone waves. Secondly, numerical simulations realized on the base of our analysis show appearance of non-oscillating and non-monotone travelling fronts in the FL model. These waves were never observed before. Finally, invoking a new approach developed recently by Solar et al., we prove the uniqueness (for a fixed propagation speed, up to translation) of each monotone front.
We study the existence, uniqueness and qualitative properties of global solutions of abstract differential equations with state-dependent delay. Results on the existence of almost periodic-type solutions (including, periodic, almost periodic, asymptotically almost periodic and almost automorphic solutions) are proved. Some examples of partial differential equations with state-dependent delay arising in population dynamics are presented.
Reaction-diffusion equation with a bistable nonlocal nonlinearity is considered in the case where the reaction term is not quasi-monotone. For this equation, the existence of travelling waves is proved by the Leray-Schauder method based on the topological degree for elliptic operators in unbounded domains and a priori estimates of solutions in properly chosen weighted spaces.
In this paper, convergence rates of solutions towards stationary solutions for the outflow problem of planar magnetohydrodynamics (MHD) are investigated. Inspired by the relationship between MHD and Navier-Stokes, we prove that the global solutions of the planar MHD converge to the corresponding stationary solutions of Navier-Stokes equations. We obtain the corresponding convergence rates based on the weighted energy method when the initial perturbation belongs to some weighted Sobolev space.
We investigate several quantitative properties of entire and meromorphic solutions to some differential-difference equations and generalised delay differential-difference equations. Our results are sharp in a certain sense as illustrated by several examples.
In this paper, by using operator-valued ${\dot{C}}^{\unicode[STIX]{x1D6FC}}$-Fourier multiplier results on vector-valued Hölder continuous function spaces, we give a characterization of the $C^{\unicode[STIX]{x1D6FC}}$-well-posedness for the third order differential equations $au^{\prime \prime \prime }(t)+u^{\prime \prime }(t)=Au(t)+Bu^{\prime }(t)+f(t)$, ($t\in \mathbb{R}$), where $A,B$ are closed linear operators on a Banach space $X$ such that $D(A)\subset D(B)$, $a\in \mathbb{C}$ and $0<\unicode[STIX]{x1D6FC}<1$.
The stochastic resonance phenomenon implies “positive” changing of a system behaviour when noise is added to the system. The phenomenon has found numerous applications in physics, neuroscience, biology, medicine, mechanics and other fields. The present paper concerns this phenomenon for parametrically excited stochastic systems, i.e. systems that feature deterministic input signals that affect their parameters, e.g. stiffness, damping or mass properties. Parametrically excited systems are now widely used for signal sensing, filtering and amplification, particularly in micro- and nanoscale applications. And noise and uncertainty can be essential for systems at this scale. Thus, these systems potentially can exhibit stochastic resonance. In the present paper, we use a “deterministic” approach to describe the stochastic resonance phenomenon that implies replacing noise by deterministic high-frequency excitations. By means of the approach, we show that stochastic resonance can occur for parametrically excited systems and determine the corresponding resonance conditions.
We analyse a class of chemical reaction networks under mass-action kinetics involving multiple time scales, whose deterministic and stochastic models display qualitative differences. The networks are inspired by gene-regulatory networks and consist of a slow subnetwork, describing conversions among the different gene states, and fast subnetworks, describing biochemical interactions involving the gene products. We show that the long-term dynamics of such networks can consist of a unique attractor at the deterministic level (unistability), while the long-term probability distribution at the stochastic level may display multiple maxima (multimodality). The dynamical differences stem from a phenomenon we call noise-induced mixing, whereby the probability distribution of the gene products is a linear combination of the probability distributions of the fast subnetworks which are ‘mixed’ by the slow subnetworks. The results are applied in the context of systems biology, where noise-induced mixing is shown to play a biochemically important role, producing phenomena such as stochastic multimodality and oscillations.
An approximate analytical solution is derived for a certain class of stochastic differential equations with constant diffusion, but nonlinear drift coefficients. Specifically, a closed form expression is derived for the response process transition probability density function (PDF) based on the concept of the Wiener path integral and on a Cauchy–Schwarz inequality treatment. This is done in conjunction with formulating and solving an error minimisation problem by relying on the associated Fokker–Planck equation operator. The developed technique, which requires minimal computational cost for the determination of the response process PDF, exhibits satisfactory accuracy and is capable of capturing the salient features of the PDF as demonstrated by comparisons with pertinent Monte Carlo simulation data. In addition to the mathematical merit of the approximate analytical solution, the derived PDF can be used also as a benchmark for assessing the accuracy of alternative, more computationally demanding, numerical solution techniques. Several examples are provided for assessing the reliability of the proposed approximation.
In this paper, we study the singular fourth-order differential equation with a deviating argument:
By using Mawhin's continuation theorem and some analytic techniques, we establish some criteria to guarantee the existence of positive periodic solutions. The significance of this paper is that g has a strong singularity at x = 0 and satisfies a small force condition at x = ∞, which is different from the known ones in the literature.
In this paper, a new formulation is proposed to evaluate the origin intensity factors (OIFs) in the singular boundary method (SBM) for solving 3D potential problems with Dirichlet boundary condition. The SBM is a strong-form boundary discretization collocation technique and is mathematically simple, easy-to-program, and free of mesh. The crucial step in the implementation of the SBM is to determine the OIFs which isolate the singularities of the fundamental solutions. Traditionally, the inverse interpolation technique (IIT) is adopted to calculate the OIFs on Dirichlet boundary, which is time consuming for large-scale simulation. In recent years, the new methodology has been developed to efficiently calculate the OIFs on Neumann boundary, but the Dirichlet problem remains an open issue. This study employs the subtracting and adding-back technique based on the integration of the fundamental solution over the whole boundary to develop a new formulation of the OIFs on 3D Dirichlet boundary. Several problems with varied domain shapes and boundary conditions are carried out to validate the effectiveness and feasibility of the proposed scheme in comparison with the SBM based on inverse interpolation technique, the method of fundamental solutions, and the boundary element method.
Semi-analytical solutions are derived for the Brusselator system in one- and two-dimensional domains. The Galerkin method is processed to approximate the governing partial differential equations via a system of ordinary differential equations. Both steady-state concentrations and transient solutions are obtained. Semi-analytical results for the stability of the model are presented for the identified critical parameter value at which a Hopf bifurcation occurs. The impact of the diffusion coefficients on the system is also considered. The results show that diffusion acts to stabilize the systems better than the equivalent nondiffusive systems with the increasing critical value of the Hopf bifurcation. Comparison between the semi-analytical and numerical solutions shows an excellent agreement with the steady-state transient solutions and the parameter values at which the Hopf bifurcations occur. Examples of stable and unstable limit cycles are given, and Hopf bifurcation points are shown to confirm the results previously calculated in the Hopf bifurcation map. The usefulness and accuracy of the semi-analytical results are confirmed by comparison with the numerical solutions of partial differential equations.
Uniformization transforms a pseudo-Poisson process with unequal intensities (leaving rates) into one with uniform intensity. Self-transitions is the price to pay. Two intensities arise when one considers an absorbing barrier of a Markov process as a body in its own right: a pair of Markov processes intertwined by an extended Chapman–Kolmogorov equation naturally arises. We show that Sauer's two-state space empathy theory handles such intertwined processes. The price of self-transitions is also avoided.
where are linear positive continuous operators and f : Cloc(ℝ;ℝ) → Lloc(ℝ;ℝ) is a continuous operator satisfying the local Carathéodory conditions. Efficient conditions guaranteeing the existence of a global solution, which is bounded and non-negative in the neighbourhood of –∞, to the equation considered are established provided that ℓ0, ℓ1 and f are Volterra-type operators. The existence of a solution that is positive on the whole real line is discussed as well. Furthermore, the asymptotic properties of such solutions are studied in the neighbourhood of –∞. The results are applied to certain models appearing in the natural sciences.
The Adomian decomposition method (ADM) is an efficient method for solving linear and nonlinear ordinary differential equations, differential algebraic equations, partial differential equations, stochastic differential equations, and integral equations. Based on the ADM, a new analytical and numerical treatment is introduced in this research for third-order boundary-value problems. The effectiveness of the proposed approach is verified by numerical examples.