We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we introduce a dynamical urban planning model. This leads to the study of a system of nonlinear equations coupled through multi-marginal optimal transport problems. A first example consists in solving two equations coupled through the solution to the Monge–Ampère equation. We show that theWasserstein gradient flow theory provides a very good framework to solve these highly nonlinear systems. At the end, a uniqueness result is presented in dimension one based on convexity arguments.
The unified transform method (UTM) or Fokas method for analyzing initial-boundary value (IBV) problems provides an important generalization of the inverse scattering transform (IST) method for analyzing initial value problems. In comparison with the IST, a major difficulty of the implementation of the UTM, in general, is the involvement of unknown boundary values. In this paper we analyze the IBV problem for the massive Thirring model in the quarter plane, assuming that the initial and boundary data belong to the Schwartz class. We show that for this integrable model, the UTM is as effective as the IST method: Riemann-Hilbert problems we formulated for such a problem have explicit (x, t)-dependence and depend only on the given initial and boundary values; they do not involve additional unknown boundary values.
We consider the compressible Navier–Stokes system on time-dependent domains with prescribed motion of the boundary. For both the no-slip boundary conditions as well as slip boundary conditions we prove local-in-time existence of strong solutions. These results are obtained using a transformation of the problem to a fixed domain and an existence theorem for Navier–Stokes like systems with lower order terms and perturbed boundary conditions. We also show the weak–strong uniqueness principle for slip boundary conditions which remained so far open question.
We investigate the Cauchy problem of the viscous liquid-gas two-phase flow model in ℝ3. Under the assumption that the initial data is close to the constant equilibrium state in the framework of Sobolev space H2(ℝ3), the Cauchy problem is shown to be globally well-posed by an energy method. If additionally, for 1 ⩽ p < 6/5, Lp-norm of the initial perturbation is bounded, the optimal convergence rates of the solutions in Lq-norm with 2 ⩽ q ⩽ 6 and optimal convergence rates of their spatial derivatives in L2-norm are also obtained by combining spectral analysis with energy methods.
This paper studies the regularity results of classical solutions to the two-dimensional critical Oldroyd-B model in the corotational case. The critical case refers to the full Laplacian dissipation in the velocity or the full Laplacian dissipation in the non-Newtonian part of the stress tensor. Whether or not their classical solutions develop finite time singularities is a difficult problem and remains open. The object of this paper is two-fold. Firstly, we establish the global regularity result to the case when the critical case occurs in the velocity and a logarithmic dissipation occurs in the non-Newtonian part of the stress tensor. Secondly, when the critical case occurs in the non-Newtonian part of the stress tensor, we first present many interesting global a priori bounds, then establish a conditional global regularity in terms of the non-Newtonian part of the stress tensor. This criterion comes naturally from our approach to obtain a global L∞-bound for the vorticity ω.
We study a class of flat bundles, of finite rank $N$, which arise naturally from the Donaldson–Thomas theory of a Calabi–Yau threefold $X$ via the notion of a variation of BPS structure. We prove that in a large $N$ limit their flat sections converge to the solutions to certain infinite-dimensional Riemann–Hilbert problems recently found by Bridgeland. In particular this implies an expression for the positive degree, genus 0 Gopakumar–Vafa contribution to the Gromov–Witten partition function of $X$ in terms of solutions to confluent hypergeometric differential equations.
We are interested in standing waves of a modified Schrödinger equation coupled with the Chern–Simons gauge theory. By applying a constraint minimization of Nehari-Pohozaev type, we prove the existence of radial ground state solutions. We also investigate the nonexistence for nontrivial solutions.
We provide a detailed mathematical analysis of a model for phase separation on biological membranes which was recently proposed by Garcke, Rätz, Röger and the second author. The model is an extended Cahn–Hilliard equation which contains additional terms to account for the active transport processes. We prove results on the existence and regularity of solutions, their long-time behaviour, and on the existence of stationary solutions. Moreover, we investigate two different asymptotic regimes. We study the case of large cytosolic diffusion and investigate the effect of an infinitely large affinity between membrane components. The first case leads to the reduction of coupled bulk-surface equations in the model to a system of surface equations with non-local contributions. Subsequently, we recover a variant of the well-known Ohta–Kawasaki equation as the limit for infinitely large affinity between membrane components.
Inspired by a PDE–ODE system of aggregation developed in the biomathematical literature, we investigate an interacting particle system representing aggregation at the level of individuals. We prove that the empirical density of the individual converges to the solution of the PDE–ODE system.
where Ω ⊂ ℝ2 is a bounded domain. In the second place, we present existence results for the following stationary Schrödinger systems defined in the whole plane
0.2
$$\left\{ {\matrix{ {-\Delta u + u = g(v)\;\;\;{\rm in}\;{\open R}^2,} \cr {-\Delta v + v = f(u)\;\;\;{\rm in}\;{\open R}^2.} \cr } } \right.$$
We assume that the nonlinearities f, g have critical growth in the sense of Trudinger–Moser. By using a suitable variational framework based on the generalized Nehari manifold method, we obtain the existence of ground state solutions of both systems (0.1) and (0.2).
Evolution of planar curves under a nonlocal geometric equation is investigated. It models the simultaneous contraction and growth of carbonate particles called ooids in geosciences. Using classical ODE results and a bijective mapping, we demonstrate that the steady parameters associated with the physical environment determine a unique, time-invariant, compact shape among smooth, convex curves embedded in ℝ2. It is also revealed that any time-invariant solution possesses D2 symmetry. The model predictions remarkably agree with ooid shapes observed in nature.
We demonstrate the global existence of weak solutions to a class of semilinear strongly damped wave equations possessing nonlinear hyperbolic dynamic boundary conditions. The associated linear operator is $(-\unicode[STIX]{x1D6E5}_{W})^{\unicode[STIX]{x1D703}}\unicode[STIX]{x2202}_{t}u$, where $\unicode[STIX]{x1D703}\in [\frac{1}{2},1)$ and $\unicode[STIX]{x1D6E5}_{W}$ is the Wentzell–Laplacian. A balance condition is assumed to hold between the nonlinearity defined on the interior of the domain and the nonlinearity on the boundary. This allows for arbitrary (supercritical) polynomial growth of each potential, as well as mixed dissipative/antidissipative behaviour.
In this paper, we investigate existence and non-existence of a nontrivial solution to the pseudo-relativistic nonlinear Schrödinger equation
$$\left( \sqrt{-c^2\Delta + m^2 c^4}-mc^2\right) u + \mu u = \vert u \vert^{p-1}u\quad {\rm in}~{\open R}^n~(n \ges 2) $$
involving an H1/2-critical/supercritical power-type nonlinearity, that is, p ⩾ ((n + 1)/(n − 1)). We prove that in the non-relativistic regime, there exists a nontrivial solution provided that the nonlinearity is H1/2-critical/supercritical but it is H1-subcritical. On the other hand, we also show that there is no nontrivial bounded solution either (i) if the nonlinearity is H1/2-critical/supercritical in the ultra-relativistic regime or (ii) if the nonlinearity is H1-critical/supercritical in all cases.
where ${\open R}^N \setminus \Omega $ is a bounded regular domain. The existence of a bound state solution is established in situations where this problem does not have a ground state.
We consider the Laplace operator in a tubular neighbourhood of a conical surface of revolution, subject to an Aharonov-Bohm magnetic field supported on the axis of symmetry and Dirichlet boundary conditions on the boundary of the domain. We show that there exists a critical total magnetic flux depending on the aperture of the conical surface for which the system undergoes an abrupt spectral transition from infinitely many eigenvalues below the essential spectrum to an empty discrete spectrum. For the critical flux, we establish a Hardy-type inequality. In the regime with an infinite discrete spectrum, we obtain sharp spectral asymptotics with a refined estimate of the remainder and investigate the dependence of the eigenvalues on the aperture of the surface and the flux of the magnetic field.
The Navier-Stokes equations for viscous, incompressible fluids are studied in the three-dimensional periodic domains, with the body force having an asymptotic expansion, when time goes to infinity, in terms of power-decaying functions in a Sobolev-Gevrey space. Any Leray-Hopf weak solution is proved to have an asymptotic expansion of the same type in the same space, which is uniquely determined by the force, and independent of the individual solutions. In case the expansion is convergent, we show that the next asymptotic approximation for the solution must be an exponential decay. Furthermore, the convergence of the expansion and the range of its coefficients, as the force varies are investigated.
Kolmogorov's theory of turbulence predicts that only wavenumbers below some critical value, called Kolmogorov's dissipation number, are essential to describe the evolution of a three-dimensional (3D) fluid flow. A determining wavenumber, first introduced by Foias and Prodi for the 2D Navier–Stokes equations, is a mathematical analogue of Kolmogorov's number. The purpose of this paper is to prove the existence of a time-dependent determining wavenumber for the 3D Navier–Stokes equations whose time average is bounded by Kolmogorov's dissipation wavenumber for all solutions on the global attractor whose intermittency is not extreme.
The main purpose of this paper is to study the existence of travelling waves with a critical speed for an influenza model with treatment. By using some analysis techniques that involve super-critical speeds and an approximation method, the existence of travelling waves with the critical speed is proved.