We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
holds true. It is known that such an estimate holds if either the tangential or normal component of ω vanishes on the boundary ∂Ω. We show that the vanishing tangential component condition is a special case of a more general one. In two dimensions, we give an interpolation result between these two classical boundary conditions.
We study a class of Schrödinger lattice systems with sublinear nonlinearities and perturbed terms. We get an interesting result that the systems do not have nontrivial homoclinic solutions if the perturbed terms are removed, but the systems have ground state homoclinic solutions if the perturbed terms are added. Besides, we also study the continuity of the homoclinic solutions in the perturbation terms at zero. To the best of our knowledge, there is no published result focusing on the perturbed Schrödinger lattice systems.
We show uniform-in-time propagation of algebraic and stretched exponential moments for the Becker--Döring equations. Our proof is based upon a suitable use of the maximum principle together with known rates of convergence to equilibrium.
We consider the Cauchy problem for the nonlinear Schrödinger equation on the whole space. After introducing a weaker concept of finite speed of propagation, we show that the concatenation of initial data gives rise to solutions whose time of existence increases as one translates one of the initial data. Moreover, we show that, given global decaying solutions with initial data u0, v0, if |y| is large, then the concatenated initial data u0 + v0(· − y) gives rise to globally decaying solutions.
By using variational and some new analytic techniques, we prove the existence of ground state solutions for the quasilinear Schrödinger equation with variable potentials and super-linear nonlinearities. Moreover, we establish a minimax characterisation of the ground state energy. Our result improves and extends the existing results in the literature.
where Ω is a bounded smooth domain in ℝN (N ≥ 1), α ≥ 2 and θ is a parameter. Under the assumption that g(x, u) is sublinear near the origin with respect to u, we study the effect of the perturbation term h(x, u), which may break the symmetry of the associated energy functional. With the aid of critical point theory and the truncation method, we show that this system possesses multiple small negative energy solutions.
This paper is concerned with two frequency-dependent susceptible–infected–susceptible epidemic reaction–diffusion models in heterogeneous environment, with a cross-diffusion term modelling the effect that susceptible individuals tend to move away from higher concentration of infected individuals. It is first shown that the corresponding Neumann initial-boundary value problem in an n-dimensional bounded smooth domain possesses a unique global classical solution which is uniformly in-time bounded regardless of the strength of the cross-diffusion and the spatial dimension n. It is further shown that, even in the presence of cross-diffusion, the models still admit threshold-type dynamics in terms of the basic reproduction number $\mathcal {R}_0$ – i.e. the unique disease-free equilibrium is globally stable if $\mathcal {R}_0\lt1$, while if $\mathcal {R}_0\gt1$, the disease is uniformly persistent and there is an endemic equilibrium (EE), which is globally stable in some special cases with weak chemotactic sensitivity. Our results on the asymptotic profiles of EE illustrate that restricting the motility of susceptible population may eliminate the infectious disease entirely for the first model with constant total population but fails for the second model with varying total population. In particular, this implies that such cross-diffusion does not contribute to the elimination of the infectious disease modelled by the second one.
The linear Schrödinger equation with piecewise constant potential in one spatial dimension is a well-studied textbook problem. It is one of only a few solvable models in quantum mechanics and shares many qualitative features with physically important models. In examples such as ‘particle in a box’ and tunnelling, attention is restricted to the time-independent Schrödinger equation. This paper combines the unified transform method and recent insights for interface problems to present fully explicit solutions for the time-dependent problem.
This study investigates the phenomenon of targeted energy transfer (TET) from a linear oscillator to a nonlinear attachment behaving as a nonlinear energy sink for both transient and stochastic excitations. First, the dynamics of the underlying Hamiltonian system under deterministic transient loading is studied. Assuming that the transient dynamics can be partitioned into slow and fast components, the governing equations of motion corresponding to the slow flow dynamics are derived and the behaviour of the system is analysed. Subsequently, the effect of noise on the slow flow dynamics of the system is investigated. The Itô stochastic differential equations for the noisy system are derived and the corresponding Fokker–Planck equations are numerically solved to gain insights into the behaviour of the system on TET. The effects of the system parameters as well as noise intensity on the optimal regime of TET are studied. The analysis reveals that the interaction of nonlinearities and noise enhances the optimal TET regime as predicted in deterministic analysis.
This work is devoted to the study of an integro-differential system of equations modelling the genetic adaptation of a pathogen by taking into account both mutation and selection processes. First, we study the asymptotic behaviour of the system and prove that it eventually converges to a stationary state. Next, we more closely investigate the behaviour of the system in the presence of multiple EAs. Under suitable assumptions and based on a small mutation variance asymptotic, we describe the existence of a long transient regime during which the pathogen population remains far from its asymptotic behaviour and highly concentrated around some phenotypic value that is different from the one described by its asymptotic behaviour. In that setting, the time needed for the system to reach its large time configuration is very long and multiple evolutionary attractors may act as a barrier of evolution that can be very long to bypass.
We are interested in the Korteweg–de Vries (KdV), Burgers and Whitham limits for a spatially periodic Boussinesq model with non-small contrast. We prove estimates of the relations between the KdV, Burgers and Whitham approximations and the true solutions of the original system that guarantee these amplitude equations make correct predictions about the dynamics of the spatially periodic Boussinesq model over their natural timescales. The proof is based on Bloch wave analysis and energy estimates and is the first justification result of the KdV, Burgers and Whitham approximations for a dispersive partial differential equation posed in a spatially periodic medium of non-small contrast.
In this paper we are concerned with the well-posedness and the exponential stabilization of the generalized Korteweg–de Vries–Burgers equation, posed on the whole real line, under the effect of a damping term. Both problems are investigated when the exponent p in the nonlinear term ranges over the interval [1, 5). We first prove the global well-posedness in Hs(ℝ) for 0 ≤ s ≤ 3 and 1 ≤ p < 2, and in H3(ℝ) when p ≥ 2. For 2 ≤ p < 5, we prove the existence of global solutions in the L2-setting. Then, by using multiplier techniques and interpolation theory, the exponential stabilization is obtained with an indefinite damping term and 1 ≤ p < 2. Under the effect of a localized damping term the result is obtained when 2 ≤ p < 5. Combining multiplier techniques and compactness arguments, we show that the problem of exponential decay is reduced to proving the unique continuation property of weak solutions. Here, the unique continuation is obtained via the usual Carleman estimate.
We show that under the Eikonal abrasion model, prescribing uniform normal speed in the direction of the inward surface normal, the isoperimetric quotient of a convex shape is decreasing monotonically.
In this paper we consider the existence of least energy nodal solution for the defocusing quasilinear Schrödinger equation
$$-\Delta u - u \Delta u^2 + V(x)u = a(x)[g(u) + \lambda \vert u \vert ^{p-2}u] \hbox{in} {\open R}^N,$$
where λ≥0 is a real parameter, V(x) is a non-vanishing function, a(x) can be a vanishing positive function at infinity, the nonlinearity g(u) is of subcritical growth, the exponent p≥22*, and N≥3. The proof is based on a dual argument on Nehari manifold by employing a deformation argument and an $L</italic>^{\infty}({\open R}^{N})$-estimative.
This paper is devoted to the study of the long wave approximation for water waves under the influence of the gravity and a Coriolis forcing. We start by deriving a generalization of the Boussinesq equations in one (spatial) dimension and we rigorously justify them as an asymptotic model of water wave equations. These new Boussinesq equations are not the classical Boussinesq equations: a new term due to the vorticity and the Coriolis forcing appears that cannot be neglected. We study the Boussinesq regime and derive and fully justify different asymptotic models when the bottom is flat: a linear equation linked to the Klein–Gordon equation admitting the so-called Poincaré waves; the Ostrovsky equation, which is a generalization of the Korteweg–de Vries (KdV) equation in the presence of a Coriolis forcing, when the rotation is weak; and the KdV equation when the rotation is very weak. Therefore, this work provides the first mathematical justification of the Ostrovsky equation. Finally, we derive a generalization of the Green–Naghdi equations in one spatial dimension for small topography variations and we show that this model is consistent with the water wave equations.
We analyse a scattering problem of electromagnetic waves by a bounded chiral conductive obstacle, which is surrounded by a dielectric, via the quasi-stationary approximation for the Maxwell equations. We prove the reciprocity relations for incident plane and spherical electric waves upon the scatterer. Mixed reciprocity relations have also been proved for a plane wave and a spherical wave. In the case of spherical waves, the point sources are located either inside or outside the scatterer. These relations are used to study the inverse scattering problems.
We consider the global behaviour for large solutions of the Dirac–Klein–Gordon system in critical spaces in dimension $1+3$. In particular, we show that bounded solutions exist globally in time and scatter, provided that a controlling space–time Lebesgue norm is finite. A crucial step is to prove nonlinear estimates that exploit the dichotomy between transversality and null structure, and furthermore involve the controlling norm.
The basis of this paper is the elementary observation that the n-step descendant distribution of any Galton–Watson process satisfies a discrete Smoluchowski coagulation equation with multiple coalescence. Using this we obtain simple necessary and sufficient criteria for the convergence of scaling limits of critical Galton–Watson processes in terms of scaled family-size distributions and a natural notion of convergence of Lévy triples. Our results provide a clear and natural interpretation, and an alternate proof, of the fact that the Lévy jump measure of certain continuous-state branching processes (CSBPs) satisfies a generalized Smoluchowski equation. (This result was previously proved by Bertoin and Le Gall (2006).) Our analysis shows that the nonlinear scaling dynamics of CSBPs become linear and purely dilatational when expressed in terms of the Lévy triple associated with the branching mechanism. We prove a continuity theorem for CSBPs in terms of the associated Lévy triples, and use our scaling analysis to prove the existence of universal critical Galton–Watson processes and CSBPs analogous to Doeblin's `universal laws'. Namely, these universal processes generate all possible critical and subcritical CSBPs as subsequential scaling limits. Our convergence results rely on a natural topology for Lévy triples and a continuity theorem for Bernstein transforms (Laplace exponents) which we develop in a self-contained appendix.
We consider the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation (4NLS) on the circle. In particular, we prove global well-posedness of the renormalized 4NLS in negative Sobolev spaces $H^{s}(\mathbb{T})$, $s>-\frac{1}{3}$, with enhanced uniqueness. The proof consists of two separate arguments. (i) We first prove global existence in $H^{s}(\mathbb{T})$, $s>-\frac{9}{20}$, via the short-time Fourier restriction norm method. By following the argument in Guo–Oh for the cubic NLS, this also leads to nonexistence of solutions for the (nonrenormalized) 4NLS in negative Sobolev spaces. (ii) We then prove enhanced uniqueness in $H^{s}(\mathbb{T})$, $s>-\frac{1}{3}$, by establishing an energy estimate for the difference of two solutions with the same initial condition. For this purpose, we perform an infinite iteration of normal form reductions on the $H^{s}$-energy functional, allowing us to introduce an infinite sequence of correction terms to the $H^{s}$-energy functional in the spirit of the $I$-method. In fact, the main novelty of this paper is this reduction of the $H^{s}$-energy functionals (for a single solution and for the difference of two solutions with the same initial condition) to sums of infinite series of multilinear terms of increasing degrees.
We are concerned with the existence of positive weak solutions, as well as the existence of bound states (i.e. solutions in W1, p (ℝN)), for quasilinear scalar field equations of the form
$$ - \Delta _pu + V(x) \vert u \vert ^{p - 2}u = K(x) \vert u \vert ^{q - 2}u + \vert u \vert ^{p^ * - 2}u,\qquad x \in {\open R}^N,$$
where Δpu: = div(|∇ u|p−2∇u), 1 < p < N, p*: = Np/(N − p) is the critical Sobolev exponent, q ∈ (p, p*), while V(·) and K(·) are non-negative continuous potentials that may decay to zero as |x| → ∞ but are free from any integrability or symmetry assumptions.