To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show local higher integrability of derivative of a suitable weak solution to the surface growth model, provided a scale-invariant quantity is locally bounded. If additionally our scale-invariant quantity is small, we prove local smoothness of solutions.
We consider a model for the evolution of damage in elastic materials originally proposed by Michel Frémond. For the corresponding PDE system, we prove existence and uniqueness of a local in time strong solution. The main novelty of our result stands in the fact that, differently from previous contributions, we assume no occurrence of any type of regularising terms.
We extend previous weak well-posedness results obtained in Frigeri et al. (2017, Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs, Vol. 22, Springer, Cham, pp. 217–254) concerning a non-local variant of a diffuse interface tumour model proposed by Hawkins-Daarud et al. (2012, Int. J. Numer. Method Biomed. Engng.28, 3–24). The model consists of a non-local Cahn–Hilliard equation with degenerate mobility and singular potential for the phase field variable, coupled to a reaction–diffusion equation for the concentration of a nutrient. We prove the existence of strong solutions to the model and establish some high-order continuous dependence estimates, even in the presence of concentration-dependent mobilities for the nutrient variable in two spatial dimensions. Then, we apply the new regularity results to study an inverse problem identifying the initial tumour distribution from measurements at the terminal time. Formulating the Tikhonov regularised inverse problem as a constrained minimisation problem, we establish the existence of minimisers and derive first-order necessary optimality conditions.
We study the Muskat problem describing the vertical motion of two immiscible fluids in a two-dimensional homogeneous porous medium in an Lp-setting with p ∈ (1, ∞). The Sobolev space $W_p^s(\mathbb R)$ with s = 1+1/p is a critical space for this problem. We prove, for each s ∈ (1+1/p, 2) that the Rayleigh–Taylor condition identifies an open subset of $W_p^s(\mathbb R)$ within which the Muskat problem is of parabolic type. This enables us to establish the local well-posedness of the problem in all these subcritical spaces together with a parabolic smoothing property.
We investigate, both analytically and numerically, dispersive fractalisation and quantisation of solutions to periodic linear and nonlinear Fermi–Pasta–Ulam–Tsingou systems. When subject to periodic boundary conditions and discontinuous initial conditions, e.g., a step function, both the linearised and nonlinear continuum models for FPUT exhibit fractal solution profiles at irrational times (as determined by the coefficients and the length of the interval) and quantised profiles (piecewise constant or perturbations thereof) at rational times. We observe a similar effect in the linearised FPUT chain at times t where these models have validity, namely t = O(h−2), where h is proportional to the intermass spacing or, equivalently, the reciprocal of the number of masses. For nonlinear periodic FPUT systems, our numerical results suggest a somewhat similar behaviour in the presence of small nonlinearities, which disappears as the nonlinear force increases in magnitude. However, these phenomena are manifested on very long time intervals, posing a severe challenge for numerical integration as the number of masses increases. Even with the high-order splitting methods used here, our numerical investigations are limited to nonlinear FPUT chains with a smaller number of masses than would be needed to resolve this question unambiguously.
The existence of a symmetric mode in an elastic solid wedge for all admissible values of the Poisson ratio and arbitrary interior angles close to π has been proven.
We prove uniform Hölder regularity estimates for a transport-diffusion equation with a fractional diffusion operator and a general advection field in of bounded mean oscillation, as long as the order of the diffusion dominates the transport term at small scales; our only requirement is the smallness of the negative part of the divergence in some critical Lebesgue space. In comparison to a celebrated result by Silvestre, our advection field does not need to be bounded. A similar result can be obtained in the supercritical case if the advection field is Hölder continuous. Our proof is inspired by Kiselev and Nazarov and is based on the dual evolution technique. The idea is to propagate an atom property (i.e., localisation and integrability in Lebesgue spaces) under the dual conservation law, when it is coupled with the fractional diffusion operator.
This study considers a model for oncolytic virotherapy, as given by the reaction–diffusion–taxis system
\[\begin{eqnarray*} \left\{ \begin{array}{l} u_t = \Delta u - \nabla (u\nabla v)-\rho uz, \\ v_t = - (u+w)v, \\ w_t = D_w \Delta w - w + uz, \\ z_t = D_z \Delta z - z - uz + \beta w, \end{array} \right. \end{eqnarray*}\]
in a smoothly bounded domain Ω ⊂ ℝ2, with parameters Dw > 0, Dz > 0, β > 0 and ρ ⩾ 0.
Previous analysis has asserted that for all reasonably regular initial data, an associated no-flux type initial-boundary value problem admits a global classical solution, and that this solution is bounded if β < 1, whereas whenever β > 1 and $({1}/{|\Omega |})\int _\Omega u(\cdot ,0) > 1/(\beta -1)$, infinite-time blow-up occurs at least in the particular case when ρ = 0.
In order to provide an appropriate complement to this, the current study reveals that for any ρ ⩾ 0 and arbitrary β > 0, at each prescribed level γ ∈ (0, 1/(β − 1)+) one can identify an L∞-neighbourhood of the homogeneous distribution (u, v, w, z) ≡ (γ, 0, 0, 0) within which all initial data lead to globally bounded solutions that stabilize towards the constant equilibrium (u∞, 0, 0, 0) with some u∞ > 0.
In this paper, we investigate the fast signal diffusion limit of solutions of the fully parabolic Keller–Segel–Stokes system to solution of the parabolic–elliptic-fluid counterpart in a two-dimensional or three-dimensional bounded domain with smooth boundary. Under the natural volume-filling assumption, we establish an algebraic convergence rate of the fast signal diffusion limit for general large initial data by developing a series of subtle bootstrap arguments for combinational functionals and using some maximal regularities. In our current setting, in particular, we can remove the restriction to asserting convergence only along some subsequence in Wang–Winkler and the second author (Cal. Var., 2019).
This paper concerns the energy conservation for the weak solutions of the compressible Navier–Stokes equations. Assume that the density is positively bounded, we work on the regularity assumption on the gradient of the velocity, and establish a Lp–Ls type condition for the energy equality to hold in the distributional sense in time. We mention that no regularity assumption on the density derivative is needed any more.
Using open books, we prove the existence of a non-vanishing steady solution to the Euler equations for some metric in every homotopy class of non-vanishing vector fields of any odd-dimensional manifold. As a corollary, any such field can be realized in an invariant submanifold of a contact Reeb field on a sphere of high dimension. The solutions constructed are geodesible and hence of Beltrami type, and can be modified to obtain chaotic fluids. We characterize Beltrami fields in odd dimensions and show that there always exist volume-preserving Beltrami fields which are neither geodesible nor Euler flows for any metric. This contrasts with the three-dimensional case, where every volume-preserving Beltrami field is a steady Euler flow for some metric. Finally, we construct a non-vanishing Beltrami field (which is not necessarily volume-preserving) without periodic orbits in every manifold of odd dimension greater than three.
Mean-field games (MFGs) and the best-reply strategy (BRS) are two methods of describing competitive optimisation of systems of interacting agents. The latter can be interpreted as an approximation of the respective MFG system. In this paper, we present an analysis and comparison of the two approaches in the stationary case. We provide novel existence and uniqueness results for the stationary boundary value problems related to the MFG and BRS formulations, and we present an analytical and numerical comparison of the two paradigms in some specific modelling situations.
We construct global-in-time singular dynamics for the (renormalized) cubic fourth-order nonlinear Schrödinger equation on the circle, having the white noise measure as an invariant measure. For this purpose, we introduce the ‘random-resonant / nonlinear decomposition’, which allows us to single out the singular component of the solution. Unlike the classical McKean, Bourgain, Da Prato-Debussche type argument, this singular component is nonlinear, consisting of arbitrarily high powers of the random initial data. We also employ a random gauge transform, leading to random Fourier restriction norm spaces. For this problem, a contraction argument does not work, and we instead establish the convergence of smooth approximating solutions by studying the partially iterated Duhamel formulation under the random gauge transform. We reduce the crucial nonlinear estimates to boundedness properties of certain random multilinear functionals of the white noise.
The propagation of gradient flow structures from microscopic to macroscopic models is a topic of high current interest. In this paper, we discuss this propagation in a model for the diffusion of particles interacting via hard-core exclusion or short-range repulsive potentials. We formulate the microscopic model as a high-dimensional gradient flow in the Wasserstein metric for an appropriate free-energy functional. Then we use the JKO approach to identify the asymptotics of the metric and the free-energy functional beyond the lowest order for single particle densities in the limit of small particle volumes by matched asymptotic expansions. While we use a propagation of chaos assumption at far distances, we consider correlations at small distance in the expansion. In this way, we obtain a clear picture of the emergence of a macroscopic gradient structure incorporating corrections in the free-energy functional due to the volume exclusion.
We deal with an initial boundary value problem of nonhomogeneous Boussinesq equations for magnetohydrodynamics convection in two-dimensional domains. We prove that there is a unique global strong solution. Moreover, we show that the temperature converges exponentially to zero in H1 as time goes to infinity. In particular, the initial data can be arbitrarily large and vacuum is allowed. Our analysis relies on energy method and a lemma of Desjardins (Arch. Rational Mech. Anal. 137:135–158, 1997).
This paper deals with the logistic Keller–Segel model
\[ \begin{cases} u_t = \Delta u - \chi \nabla\cdot(u\nabla v) + \kappa u - \mu u^2, \\ v_t = \Delta v - v + u \end{cases} \]
in bounded two-dimensional domains (with homogeneous Neumann boundary conditions and for parameters χ, κ ∈ ℝ and μ > 0), and shows that any nonnegative initial data (u0, v0) ∈ L1 × W1,2 lead to global solutions that are smooth in $\bar {\Omega }\times (0,\infty )$.
We show the incompressible Navier–Stokes–Maxwell system with solenoidal Ohm's law can be derived from the two-fluid incompressible Navier–Stokes–Maxwell system when the momentum transfer coefficient tends to zero. The strategy is based on the decay and dissipative properties of the electromagnetic field.
We consider the focussing fractional periodic Korteweg–deVries (fKdV) and fractional periodic non-linear Schrödinger equations (fNLS) equations, with L2 sub-critical dispersion. In particular, this covers the case of the periodic KdV and Benjamin-Ono models. We construct two parameter family of bell-shaped travelling waves for KdV (standing waves for NLS), which are constrained minimizers of the Hamiltonian. We show in particular that for each $\lambda > 0$, there is a travelling wave solution to fKdV and fNLS $\phi : \|\phi \|_{L^2[-T,T]}^2=\lambda $, which is non-degenerate. We also show that the waves are spectrally stable and orbitally stable, provided the Cauchy problem is locally well-posed in Hα/2[ − T, T] and a natural technical condition. This is done rigorously, without any a priori assumptions on the smoothness of the waves or the Lagrange multipliers.
In this paper, we investigate the global boundedness, asymptotic stability and pattern formation of predator–prey systems with density-dependent prey-taxis in a two-dimensional bounded domain with Neumann boundary conditions, where the coefficients of motility (diffusiq‘dfdon) and mobility (prey-taxis) of the predator are correlated through a prey density-dependent motility function. We establish the existence of classical solutions with uniform-in time bound and the global stability of the spatially homogeneous prey-only steady states and coexistence steady states under certain conditions on parameters by constructing Lyapunov functionals. With numerical simulations, we further demonstrate that spatially homogeneous time-periodic patterns, stationary spatially inhomogeneous patterns and chaotic spatio-temporal patterns are all possible for the parameters outside the stability regime. We also find from numerical simulations that the temporal dynamics between linearised system and nonlinear systems are quite different, and the prey density-dependent motility function can trigger the pattern formation.
We propose and study a class of parabolic-ordinary differential equation models involving chemotaxis and haptotaxis of a species following signals indirectly produced by another, non-motile one. The setting is motivated by cancer invasion mediated by interactions with the tumour microenvironment, but has much wider applicability, being able to comprise descriptions of biologically quite different problems. As a main mathematical feature constituting a core difference to both classical Keller–Segel chemotaxis systems and Chaplain–Lolas type chemotaxis–haptotaxis systems, the considered model accounts for certain types of indirect signal production mechanisms. The main results assert unique global classical solvability under suitably mild assumptions on the system parameter functions in associated spatially two-dimensional initial-boundary value problems. In particular, this rigorously confirms that at least in two-dimensional settings, the considered indirectness in signal production induces a significant blow-up suppressing tendency also in taxis systems substantially more general than some particular examples for which corresponding effects have recently been observed.