To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
is considered along with no-flux boundary conditions for $u$ and with prescribed constant positive Dirichlet boundary data for $v$. It is shown that if $D\in C^{3}([0,\infty ))$ is such that $0< D(\xi ) \le {K_D} (\xi +1)^{-\alpha }$ for all $\xi >0$ with some ${K_D}>0$ and $\alpha >0$, then for all initial data from a considerably large set of radial functions on $\Omega$, the corresponding initial-boundary value problem admits a solution blowing up in finite time.
In this paper, we study global-in-time, weighted Strichartz estimates for the Dirac equation on warped product spaces in dimension $n\geq 3$. In particular, we prove estimates for the dynamics restricted to eigenspaces of the Dirac operator on the compact spin manifolds defining the ambient manifold under some explicit sufficient condition on the metric and estimates with loss of angular derivatives for general initial data in the setting of spherically symmetric and asymptotically flat manifolds.
In this paper, we show that the permeability of a porous material (Tartar (1980)) and that of a bubbly fluid (Lipton and Avellaneda. Proc. R. Soc. Edinburgh Sect. A: Math. 114 (1990), 71–79) are limiting cases of the complexified version of the two-fluid models posed in Lipton and Avellaneda (Proc. R. Soc. Edinburgh Sect. A: Math. 114 (1990), 71–79). We assume the viscosity of the inclusion fluid is $z\mu _1$ and the viscosity of the hosting fluid is $\mu _1\in \mathbb {R}^{+}$, $z\in \mathbb {C}$. The proof is carried out by the construction of solutions for large $|z|$ and small $|z|$ with an iteration process similar to the one used in Bruno and Leo (Arch. Ration. Mech. Anal. 121 (1993), 303–338) and Golden and Papanicolaou (Commun. Math. Phys. 90 (1983), 473–491) and the analytic continuation. Moreover, we also show that for a fixed microstructure, the permeabilities of these three cases share the same integral representation formula (3.17) with different values of contrast parameter $s:=1/(z-1)$, as long as $s$ is outside the interval $\left [-\frac {2E_2^{2}}{1+2E_2^{2}},-\frac {1}{1+2E_1^{2}}\right ]$, where the positive constants $E_1$ and $E_2$ are the extension constants that depend only on the geometry of the periodic pore space of the material.
We construct a new type of planar Euler flows with localized vorticity. Let $\kappa _i\not =0$, $i=1,\ldots , m$, be m arbitrarily fixed constants. For any given nondegenerate critical point $\mathbf {x}_0=(x_{0,1},\ldots ,x_{0,m})$ of the Kirchhoff–Routh function defined on $\Omega ^m$ corresponding to $(\kappa _1,\ldots , \kappa _m)$, we construct a family of stationary planar flows with vortex sheets that have large vorticity amplitude and concentrate on curves perturbed from small circles centered near $x_{0,i}$, $i=1,\ldots ,m$. The proof is accomplished via the implicit function theorem with suitable choice of function spaces.
The present article is devoted to the study of global solution and large time behaviour of solution for the isentropic compressible Euler system with source terms in $\mathbb {R}^d$, $d\geq 1$, which extends and improves the results obtained by Sideris et al. in ‘T.C. Sideris, B. Thomases, D.H. Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping, Comm. Partial Differential Equations 28 (2003) 795–816’. We first establish the existence and uniqueness of global smooth solution provided the initial datum is sufficiently small, which tells us that the damping terms can prevent the development of singularity in small amplitude. Next, under the additional smallness assumption, the large time behaviour of solution is investigated, we only obtain the algebra decay of solution besides the $L^2$-norm of $\nabla u$ is exponential decay.
This paper focuses on a 2D magnetohydrodynamic system with only horizontal dissipation in the domain $\Omega = \mathbb {T}\times \mathbb {R}$ with $\mathbb {T}=[0,\,1]$ being a periodic box. The goal here is to understand the stability problem on perturbations near the background magnetic field $(1,\,0)$. Due to the lack of vertical dissipation, this stability problem is difficult. This paper solves the desired stability problem by simultaneously exploiting two smoothing and stabilizing mechanisms: the enhanced dissipation due to the coupling between the velocity and the magnetic fields, and the strong Poincaré type inequalities for the oscillation part of the solution, namely the difference between the solution and its horizontal average. In addition, the oscillation part of the solution is shown to converge exponentially to zero in $H^{1}$ as $t\to \infty$. As a consequence, the solution converges to its horizontal average asymptotically.
Steady-state diffusion in long axisymmetric structures is considered. The goal is to assess one-dimensional approximations by comparing them with axisymmetric eigenfunction expansions. Two problems are considered in detail: a finite tube with one end that is partly absorbing and partly reflecting; and two finite coaxial tubes with different cross-sectional radii joined together abruptly. Both problems may be modelled using effective boundary conditions, containing a parameter known as the trapping rate. We show that trapping rates depend on the lengths of the finite tubes (and that they decay slowly as these lengths increase) and we show how trapping rates are related to blockage coefficients, which are well known in the context of potential flow along tubes of infinite length.
with positive parameters $D_u,D_w,D_z,\xi _u,\xi _w,\delta _z,\rho$, $\alpha _u,\alpha _w,\mu _u,\beta$. When posed under no-flux boundary conditions in a smoothly bounded domain $\Omega \subset {\mathbb {R}}^{2}$, and along with initial conditions involving suitably regular data, the global existence of classical solution to this system was asserted in Tao and Winkler (2020, J. Differ. Equ. 268, 4973–4997). Based on the suitable quasi-Lyapunov functional, it is shown that when the virus replication rate $\beta <1$, the global classical solution $(u,v,w,z)$ is uniformly bounded and exponentially stabilizes to the constant equilibrium $(1, 0, 0, 0)$ in the topology $(L^{\infty }(\Omega ))^{4}$ as $t\rightarrow \infty$.
In this paper, we prove several results on the exponential decay in $L^{2}$ norm of the KdV equation on the real line with localized dampings. First, for the linear KdV equation, the exponential decay holds if and only if the averages of the damping coefficient on all intervals of a fixed length have a positive lower bound. Moreover, under the same damping condition, the exponential decay holds for the (nonlinear) KdV equation with small initial data. Finally, with the aid of certain properties of propagation of regularity in Bourgain spaces for solutions of the associated linear system and the unique continuation property, the exponential decay for the KdV equation with large data holds if the damping coefficient has a positive lower bound on $E$, where $E$ is equidistributed over the real line and the complement $E^{c}$ has a finite Lebesgue measure.
This paper investigates the stability of a fully parabolic–parabolic-fluid (PP-fluid) system of the Keller–Segel–Navier–Stokes type in a bounded planar domain under the natural volume-filling hypothesis. In the limit of fast signal diffusion, we first show that the global classical solutions of the PP-fluid system will converge to the solution of the corresponding parabolic–elliptic-fluid (PE-fluid) system. As a by-product, we obtain the global well-posedness of the PE-fluid system for general large initial data. We also establish some new exponential time decay estimates for suitable small initial cell mass, which in particular ensure an improvement of convergence rate on time. To further explore the stability property, we carry out three numerical examples of different types: the nontrivial and trivial equilibriums, and the rotating aggregation. The simulation results illustrate the possibility to achieve the optimal convergence and show the vanishment of the deviation between the PP-fluid system and PE-fluid system for the equilibriums and the drastic fluctuation of error for the rotating solution.
We consider the following class of quasilinear Schrödinger equations proposed in plasma physics and nonlinear optics $-\Delta u+V(x)u+\frac {\kappa }{2}[\Delta (u^{2})]u=h(u)$ in the whole two-dimensional Euclidean space. We establish the existence and qualitative properties of standing wave solutions for a broader class of nonlinear terms $h(s)$ with the critical exponential growth. We apply the dual approach to obtain solutions in the usual Sobolev space $H^{1}(\mathbb {R}^{2})$ when the parameter $\kappa >0$ is sufficiently small. Minimax techniques, Trudinger–Moser inequality and the Nash–Moser iteration method play an essential role in establishing our results.
We study stationary solutions to the Keller–Segel equation on curved planes. We prove the necessity of the mass being $8 \pi$ and a sharp decay bound. Notably, our results do not require the solutions to have a finite second moment, and thus are novel already in the flat case. Furthermore, we provide a correspondence between stationary solutions to the static Keller–Segel equation on curved planes and positively curved Riemannian metrics on the sphere. We use this duality to show the nonexistence of solutions in certain situations. In particular, we show the existence of metrics, arbitrarily close to the flat one on the plane, that do not support stationary solutions to the static Keller–Segel equation (with any mass). Finally, as a complementary result, we prove a curved version of the logarithmic Hardy–Littlewood–Sobolev inequality and use it to show that the Keller–Segel free energy is bounded from below exactly when the mass is $8 \pi$, even in the curved case.
We introduce a numerical framework for dispersive equations embedding their underlying resonance structure into the discretisation. This will allow us to resolve the nonlinear oscillations of the partial differential equation (PDE) and to approximate with high-order accuracy a large class of equations under lower regularity assumptions than classical techniques require. The key idea to control the nonlinear frequency interactions in the system up to arbitrary high order thereby lies in a tailored decorated tree formalism. Our algebraic structures are close to the ones developed for singular stochastic PDEs (SPDEs) with regularity structures. We adapt them to the context of dispersive PDEs by using a novel class of decorations which encode the dominant frequencies. The structure proposed in this article is new and gives a variant of the Butcher–Connes–Kreimer Hopf algebra on decorated trees. We observe a similar Birkhoff type factorisation as in SPDEs and perturbative quantum field theory. This factorisation allows us to single out oscillations and to optimise the local error by mapping it to the particular regularity of the solution. This use of the Birkhoff factorisation seems new in comparison to the literature. The field of singular SPDEs took advantage of numerical methods and renormalisation in perturbative quantum field theory by extending their structures via the adjunction of decorations and Taylor expansions. Now, through this work, numerical analysis is taking advantage of these extended structures and provides a new perspective on them.
We consider the $\mathbb {T}^{4}$ cubic nonlinear Schrödinger equation (NLS), which is energy-critical. We study the unconditional uniqueness of solutions to the NLS via the cubic Gross–Pitaevskii hierarchy, an uncommon method for NLS analysis which is being explored [24, 35] and does not require the existence of a solution in Strichartz-type spaces. We prove U-V multilinear estimates to replace the previously used Sobolev multilinear estimates. To incorporate the weaker estimates, we work out new combinatorics from scratch and compute, for the first time, the time integration limits, in the recombined Duhamel–Born expansion. The new combinatorics and the U-V estimates then seamlessly conclude the $H^{1}$ unconditional uniqueness for the NLS under the infinite-hierarchy framework. This work establishes a unified scheme to prove $H^{1}$ uniqueness for the $ \mathbb {R}^{3}/\mathbb {R}^{4}/\mathbb {T}^{3}/\mathbb {T}^{4}$ energy-critical Gross–Pitaevskii hierarchies and thus the corresponding NLS.
Experimental results on the immune response to cancer indicate that activation of cytotoxic T lymphocytes (CTLs) through interactions with dendritic cells (DCs) can trigger a change in CTL migration patterns. In particular, while CTLs in the pre-activation state move in a non-local search pattern, the search pattern of activated CTLs is more localised. In this paper, we develop a kinetic model for such a switch in CTL migration modes. The model is formulated as a coupled system of balance equations for the one-particle distribution functions of CTLs in the pre-activation state, activated CTLs and DCs. CTL activation is modelled via binary interactions between CTLs in the pre-activation state and DCs. Moreover, cell motion is represented as a velocity-jump process, with the running time of CTLs in the pre-activation state following a long-tailed distribution, which is consistent with a Lévy walk, and the running time of activated CTLs following a Poisson distribution, which corresponds to Brownian motion. We formally show that the macroscopic limit of the model comprises a coupled system of balance equations for the cell densities, whereby activated CTL movement is described via a classical diffusion term, whilst a fractional diffusion term describes the movement of CTLs in the pre-activation state. The modelling approach presented here and its possible generalisations are expected to find applications in the study of the immune response to cancer and in other biological contexts in which switch from non-local to localised migration patterns occurs.
We show that the energy norm of weak solutions to Vlasov equation coupled with a shear thickening fluid on the whole space has a decay rate the energy norm $E(t) \leq {C}/{(1+t)^{\alpha }}, \forall t \geq 0$ for $\alpha \in (0,3/2)$.
The aim of the paper is to explore non-local reverse-space matrix non-linear Schrödinger equations and their inverse scattering transforms. Riemann–Hilbert problems are formulated to analyse the inverse scattering problems, and the Sokhotski–Plemelj formula is used to determine Gelfand–Levitan–Marchenko-type integral equations for generalised matrix Jost solutions. Soliton solutions are constructed through the reflectionless transforms associated with poles of the Riemann–Hilbert problems.
which was introduced by Short et al. in [40] with $\chi=2$ to describe the dynamics of urban crime.
In bounded intervals $\Omega\subset\mathbb{R}$ and with prescribed suitably regular non-negative functions $B_1$ and $B_2$, we first prove the existence of global classical solutions for any choice of $\chi>0$ and all reasonably regular non-negative initial data.
We next address the issue of determining the qualitative behaviour of solutions under appropriate assumptions on the asymptotic properties of $B_1$ and $B_2$. Indeed, for arbitrary $\chi>0$, we obtain boundedness of the solutions given strict positivity of the average of $B_2$ over the domain; moreover, it is seen that imposing a mild decay assumption on $B_1$ implies that u must decay to zero in the long-term limit. Our final result, valid for all $\chi\in\left(0,\frac{\sqrt{6\sqrt{3}+9}}{2}\right),$ which contains the relevant value $\chi=2$, states that under the above decay assumption on $B_1$, if furthermore $B_2$ appropriately stabilises to a non-trivial function $B_{2,\infty}$, then (u,v) approaches the limit $(0,v_\infty)$, where $v_\infty$ denotes the solution of
We conclude with some numerical simulations exploring possible effects that may arise when considering large values of $\chi$ not covered by our qualitative analysis. We observe that when $\chi$ increases, solutions may grow substantially on short time intervals, whereas only on large timescales diffusion will dominate and enforce equilibration.
This paper presents the current state of mathematical modelling of the electrochemical behaviour of lithium-ion batteries (LIBs) as they are charged and discharged. It reviews the models developed by Newman and co-workers, both in the cases of dilute and moderately concentrated electrolytes and indicates the modelling assumptions required for their development. Particular attention is paid to the interface conditions imposed between the electrolyte and the active electrode material; necessary conditions are derived for one of these, the Butler–Volmer relation, in order to ensure physically realistic solutions. Insight into the origin of the differences between various models found in the literature is revealed by considering formulations obtained by using different measures of the electric potential. Materials commonly used for electrodes in LIBs are considered and the various mathematical models used to describe lithium transport in them discussed. The problem of upscaling from models of behaviour at the single electrode particle scale to the cell scale is addressed using homogenisation techniques resulting in the pseudo-2D model commonly used to describe charge transport and discharge behaviour in lithium-ion cells. Numerical solution to this model is discussed and illustrative results for a common device are computed.