We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The optimal $L^4$-Strichartz estimate for the Schrödinger equation on the two-dimensional rational torus $\mathbb {T}^2$ is proved, which improves an estimate of Bourgain. A new method based on incidence geometry is used. The approach yields a stronger $L^4$ bound on a logarithmic time scale, which implies global existence of solutions to the cubic (mass-critical) nonlinear Schrödinger equation in $H^s(\mathbb {T}^2)$ for any $s>0$ and data that are small in the critical norm.
We establish two-term spectral asymptotics for the operator of linear elasticity with mixed boundary conditions on a smooth compact Riemannian manifold of arbitrary dimension. We illustrate our results by explicit examples in dimension two and three, thus verifying our general formulae both analytically and numerically.
We study a system of nonlocal aggregation cross-diffusion PDEs that describe the evolution of opinion densities on a network. The PDEs are coupled with a system of ODEs that describe the time evolution of the agents on the network. Firstly, we apply the Deterministic Particle Approximation (DPA) method to the aforementioned system in order to prove the existence of solutions under suitable assumptions on the interactions between agents. Later on, we present an explicit model for opinion formation on an evolving network. The opinions evolve based on both the distance between the agents on the network and the ’attitude areas’, which depend on the distance between the agents’ opinions. The position of the agents on the network evolves based on the distance between the agents’ opinions. The goal is to study radicalisation, polarisation and fragmentation of the population while changing its open-mindedness and the radius of interaction.
We derive a global higher regularity result for weak solutions of the linear relaxed micromorphic model on smooth domains. The governing equations consist of a linear elliptic system of partial differential equations that is coupled with a system of Maxwell-type. The result is obtained by combining a Helmholtz decomposition argument with regularity results for linear elliptic systems and the classical embedding of $H(\operatorname {div};\Omega )\cap H_0(\operatorname {curl};\Omega )$ into $H^1(\Omega )$.
This paper investigates the separation property in binary phase-segregation processes modelled by Cahn-Hilliard type equations with constant mobility, singular entropy densities and different particle interactions. Under general assumptions on the entropy potential, we prove the strict separation property in both two and three-space dimensions. Namely, in 2D, we notably extend the minimal assumptions on the potential adopted so far in the literature, by only requiring a mild growth condition of its first derivative near the singular points $\pm 1$, without any pointwise additional assumption on its second derivative. For all cases, we provide a compact proof using De Giorgi’s iterations. In 3D, we also extend the validity of the asymptotic strict separation property to the case of fractional Cahn-Hilliard equation, as well as show the validity of the separation when the initial datum is close to an ‘energy minimizer’. Our framework offers insights into statistical factors like particle interactions, entropy choices and correlations governing separation, with broad applicability.
Choosing ${\kappa }$ (horizontal ordinate of the saddle point associated to the homoclinic orbit) as bifurcation parameter, bifurcations of the travelling wave solutions is studied in a perturbed $(1 + 1)$-dimensional dispersive long wave equation. The solitary wave solution exists at a suitable wave speed $c$ for the bifurcation parameter ${\kappa }\in \left (0,1-\frac {\sqrt 3}{3}\right )\cup \left (1+\frac {\sqrt 3}{3},2\right )$, while the kink and anti-kink wave solutions exist at a unique wave speed $c^*=\sqrt {15}/3$ for $\kappa =0$ or $\kappa =2$. The methods are based on the geometric singular perturbation (GSP, for short) approach, Melnikov method and invariant manifolds theory. Interestingly, not only the explicit analytical expression of the complicated homoclinic Melnikov integral is directly obtained for the perturbed long wave equation, but also the explicit analytical expression of the limit wave speed is directly given. Numerical simulations are utilized to verify our mathematical results.
In this paper, we derive the effective model describing a thin-domain flow with permeable boundary through which the fluid is injected into the domain. We start with incompressible Stokes system and perform the rigorous asymptotic analysis. Choosing the appropriate scaling for the injection leads to a compressible effective model. In this paper, we derive the effective model describing a thin-domain flow with permeable boundary through which the fluid is injected into the domain. We start with incompressible Stokes system and perform the rigorous asymptotic analysis. Choosing the appropriate scaling for the injection leads to a compressible effective model.
We consider self-propelled rigid bodies interacting through local body-attitude alignment modelled by stochastic differential equations. We derive a hydrodynamic model of this system at large spatio-temporal scales and particle numbers in any dimension $n \geq 3$. This goal was already achieved in dimension $n=3$ or in any dimension $n \geq 3$ for a different system involving jump processes. However, the present work corresponds to huge conceptual and technical gaps compared with earlier ones. The key difficulty is to determine an auxiliary but essential object, the generalised collision invariant. We achieve this aim by using the geometrical structure of the rotation group, namely its maximal torus, Cartan subalgebra and Weyl group as well as other concepts of representation theory and Weyl’s integration formula. The resulting hydrodynamic model appears as a hyperbolic system whose coefficients depend on the generalised collision invariant.
We study Gibbs measures with log-correlated base Gaussian fields on the d-dimensional torus. In the defocusing case, the construction of such Gibbs measures follows from Nelson’s argument. In this paper, we consider the focusing case with a quartic interaction. Using the variational formulation, we prove nonnormalizability of the Gibbs measure. When $d = 2$, our argument provides an alternative proof of the nonnormalizability result for the focusing $\Phi ^4_2$-measure by Brydges and Slade (1996). Furthermore, we provide a precise rate of divergence, where the constant is characterized by the optimal constant for a certain Bernstein’s inequality on $\mathbb R^d$. We also go over the construction of the focusing Gibbs measure with a cubic interaction. In the appendices, we present (a) nonnormalizability of the Gibbs measure for the two-dimensional Zakharov system and (b) the construction of focusing quartic Gibbs measures with smoother base Gaussian measures, showing a critical nature of the log-correlated Gibbs measure with a focusing quartic interaction.
Consensus-based optimisation (CBO) is a versatile multi-particle metaheuristic optimisation method suitable for performing non-convex and non-smooth global optimisations in high dimensions. It has proven effective in various applications while at the same time being amenable to a theoretical convergence analysis. In this paper, we explore a variant of CBO, which incorporates truncated noise in order to enhance the well-behavedness of the statistics of the law of the dynamics. By introducing this additional truncation in the noise term of the CBO dynamics, we achieve that, in contrast to the original version, higher moments of the law of the particle system can be effectively bounded. As a result, our proposed variant exhibits enhanced convergence performance, allowing in particular for wider flexibility in choosing the noise parameter of the method as we confirm experimentally. By analysing the time evolution of the Wasserstein-$2$ distance between the empirical measure of the interacting particle system and the global minimiser of the objective function, we rigorously prove convergence in expectation of the proposed CBO variant requiring only minimal assumptions on the objective function and on the initialisation. Numerical evidences demonstrate the benefit of truncating the noise in CBO.
We prove that the cubic nonlinear Schrödinger equation (both focusing and defocusing) is globally well-posed in $H^s({{\mathbb {R}}})$ for any regularity $s>-\frac 12$. Well-posedness has long been known for $s\geq 0$, see [55], but not previously for any $s<0$. The scaling-critical value $s=-\frac 12$ is necessarily excluded here, since instantaneous norm inflation is known to occur [11, 40, 48].
We also prove (in a parallel fashion) well-posedness of the real- and complex-valued modified Korteweg–de Vries equations in $H^s({{\mathbb {R}}})$ for any $s>-\frac 12$. The best regularity achieved previously was $s\geq \tfrac 14$ (see [15, 24, 33, 39]).
To overcome the failure of uniform continuity of the data-to-solution map, we employ the method of commuting flows introduced in [37]. In stark contrast with our arguments in [37], an essential ingredient in this paper is the demonstration of a local smoothing effect for both equations. Despite the nonperturbative nature of the well-posedness, the gain of derivatives matches that of the underlying linear equation. To compensate for the local nature of the smoothing estimates, we also demonstrate tightness of orbits. The proofs of both local smoothing and tightness rely on our discovery of a new one-parameter family of coercive microscopic conservation laws that remain meaningful at this low regularity.
This article is concerned with the problem of determining an unknown source of non-potential, external time-dependent perturbations of an incompressible fluid from large-scale observations on the flow field. A relaxation-based approach is proposed for accomplishing this, which makes use of a nonlinear property of the equations of motions to asymptotically enslave small scales to large scales. In particular, an algorithm is introduced that systematically produces approximations of the flow field on the unobserved scales in order to generate an approximation to the unknown force; the process is then repeated to generate an improved approximation of the unobserved scales, and so on. A mathematical proof of convergence of this algorithm is established in the context of the two-dimensional Navier–Stokes equations with periodic boundary conditions under the assumption that the force belongs to the observational subspace of phase space; at each stage in the algorithm, it is shown that the model error, represented as the difference between the approximating and true force, asymptotically decreases to zero in a geometric fashion provided that sufficiently many scales are observed and certain parameters of the algorithm are appropriately tuned.
where $b,\, \omega >0$ are constants, $p>2$. Based on variational methods, regularity theory and Schwarz symmetrization, the equivalence of ground state solutions for the above problem with the minimizers for some minimization problems is obtained. In particular, a new scale technique, together with Lagrange multipliers, is delicately employed to overcome some intrinsic difficulties.
Dispersive and Strichartz estimates are obtained for solutions to the wave equation with a Laguerre potential in spatial dimension three. To obtain the desired dispersive estimate, based on the spectral properties of the Schrödinger operator involved, we subsequently prove the dispersive estimate for the corresponding Schrödinger semigroup, obtain a Gaussian-type upper bound, establish Bernstein-type inequalities, and finally pass to the Müller–Seeger’s subordination formula. The desired Strichartz estimates follow by the established dispersive estimate and the standard argument of Keel–Tao.
We formulate haptotaxis models of cancer invasion wherein the infiltrating cancer cells can occupy a spectrum of states in phenotype space, ranging from ‘fully mesenchymal’ to ‘fully epithelial’. The more mesenchymal cells are those that display stronger haptotaxis responses and have greater capacity to modify the extracellular matrix (ECM) through enhanced secretion of matrix-degrading enzymes (MDEs). However, as a trade-off, they have lower proliferative capacity than the more epithelial cells. The framework is multiscale in that we start with an individual-based model that tracks the dynamics of single cells, which is based on a branching random walk over a lattice representing both physical and phenotype space. We formally derive the corresponding continuum model, which takes the form of a coupled system comprising a partial integro-differential equation for the local cell population density function, a partial differential equation for the MDE concentration and an infinite-dimensional ordinary differential equation for the ECM density. Despite the intricacy of the model, we show, through formal asymptotic techniques, that for certain parameter regimes it is possible to carry out a detailed travelling wave analysis and obtain invading fronts with spatial structuring of phenotypes. Precisely, the most mesenchymal cells dominate the leading edge of the invasion wave and the most epithelial (and most proliferative) dominate the rear, representing a bulk tumour population. As such, the model recapitulates similar observations into a front to back structuring of invasion waves into leader-type and follower-type cells, witnessed in an increasing number of experimental studies over recent years.
We generalize the known collision results for a solid in a 3D compressible Newtonian fluid to compressible non-Newtonian ones, and to Newtonian fluids with temperature-depending viscosities.
Opinion dynamics is an important and very active area of research that delves into the complex processes through which individuals form and modify their opinions within a social context. The ability to comprehend and unravel the mechanisms that drive opinion formation is of great significance for predicting a wide range of social phenomena such as political polarisation, the diffusion of misinformation, the formation of public consensus and the emergence of collective behaviours. In this paper, we aim to contribute to that field by introducing a novel mathematical model that specifically accounts for the influence of social media networks on opinion dynamics. With the rise of platforms such as Twitter, Facebook, and Instagram and many others, social networks have become significant arenas where opinions are shared, discussed and potentially altered. To this aim after an analytical construction of our new model and through incorporation of real-life data from Twitter, we calibrate the model parameters to accurately reflect the dynamics that unfold in social media, showing in particular the role played by the so-called influencers in driving individual opinions towards predetermined directions.
The connection between Residual Neural Networks (ResNets) and continuous-time control systems (known as NeurODEs) has led to a mathematical analysis of neural networks, which has provided interesting results of both theoretical and practical significance. However, by construction, NeurODEs have been limited to describing constant-width layers, making them unsuitable for modelling deep learning architectures with layers of variable width. In this paper, we propose a continuous-time Autoencoder, which we call AutoencODE, based on a modification of the controlled field that drives the dynamics. This adaptation enables the extension of the mean-field control framework originally devised for conventional NeurODEs. In this setting, we tackle the case of low Tikhonov regularisation, resulting in potentially non-convex cost landscapes. While the global results obtained for high Tikhonov regularisation may not hold globally, we show that many of them can be recovered in regions where the loss function is locally convex. Inspired by our theoretical findings, we develop a training method tailored to this specific type of Autoencoders with residual connections, and we validate our approach through numerical experiments conducted on various examples.
In this paper, we propose a novel approach that employs kinetic equations to describe the collective dynamics emerging from graph-mediated pairwise interactions in multi-agent systems. We formally show that for large graphs and specific classes of interactions a statistical description of the graph topology, given in terms of the degree distribution embedded in a Boltzmann-type kinetic equation, is sufficient to capture the collective trends of networked interacting systems. This proves the validity of a commonly accepted heuristic assumption in statistically structured graph models, namely that the so-called connectivity of the agents is the only relevant parameter to be retained in a statistical description of the graph topology. Then, we validate our results by testing them numerically against real social network data.
Conventional preytaxis systems assume that prey-tactic velocity is proportional to the prey density gradient. However, many experiments exploring the predator–prey interactions show that it is the predator’s acceleration instead of velocity that is proportional to the prey density gradient in the prey-tactic movement, which we call preytaxis with prey-induced acceleration. Mathematical models of preytaxis with prey-induced acceleration were proposed by Arditi et al. ((2001) Theor. Popul. Biol. 59(3), 207–221) and Sapoukhina et al. ((2003) Am. Nat. 162(1), 61–76) to interpret the spatial heterogeneity of predators and prey observed in experiments. This paper is devoted to exploring the qualitative behaviour of such preytaxis systems with prey-induced acceleration and establishing the global existence of classical solutions with uniform-in-time bounds in all spatial dimensions. Moreover, we prove the global stability of spatially homogeneous prey-only and coexistence steady states with decay rates under certain conditions on system parameters. For the parameters outside the stability regime, we perform linear stability analysis to find the possible patterning regimes and use numerical simulations to demonstrate that spatially inhomogeneous time-periodic patterns will typically arise from the preytaxis system with prey-induced acceleration. Noticing that conventional preytaxis systems are unable to produce spatial patterns, our results imply that the preytaxis with prey-induced acceleration is indeed more appropriate than conventional preytaxis to interpret the spatial heterogeneity resulting from predator–prey interactions.