We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the discrete Safronov-Dubovskiĭ aggregation equation associated with the physical condition, where particle injection and extraction take place in the dynamical system. In application, this model is used to describe the aggregation of particle-monomers in combination with sedimentation of particle-clusters. More precisely, we prove well-posedness of the considered model for a large class of aggregation kernel with source and efflux coefficients. Furthermore, over a long time period, we prove that the dynamical model attains a unique equilibrium solution with an exponential rate under a suitable condition on the forcing coefficient.
where $q\ge p\ge2$, r > q, $0 \lt \mu \lt N$ and $w,f \in L^1_{\rm loc}(\mathbb{R}^N)$ are two non-negative functions such that $w(x) \le C_1|x|^a$ and $f(x) \ge C_2|x|^b$ for all $|x| \gt R_0$, where $R_0,C_1,C_2 \gt 0$ and $a,b\in\mathbb{R}$. Under some appropriate assumptions on p, q, r, µ, a, b and N, we prove various Liouville-type theorems for weak solutions which are stable or stable outside a compact set of $\mathbb{R}^N$. First, we establish the standard integral estimates via stability property to derive the non-existence results for stable weak solutions. Then, by means of the Pohožaev identity, we deduce the Liouville-type theorem for weak solutions which are stable outside a compact set.
In this paper, we study consensus-based optimisation (CBO), a versatile, flexible and customisable optimisation method suitable for performing nonconvex and nonsmooth global optimisations in high dimensions. CBO is a multi-particle metaheuristic, which is effective in various applications and at the same time amenable to theoretical analysis thanks to its minimalistic design. The underlying dynamics, however, is flexible enough to incorporate different mechanisms widely used in evolutionary computation and machine learning, as we show by analysing a variant of CBO which makes use of memory effects and gradient information. We rigorously prove that this dynamics converges to a global minimiser of the objective function in mean-field law for a vast class of functions under minimal assumptions on the initialisation of the method. The proof in particular reveals how to leverage further, in some applications advantageous, forces in the dynamics without loosing provable global convergence. To demonstrate the benefit of the herein investigated memory effects and gradient information in certain applications, we present numerical evidence for the superiority of this CBO variant in applications such as machine learning and compressed sensing, which en passant widen the scope of applications of CBO.
This paper focuses on the Cauchy problem for a one-dimensional quasilinear hyperbolic–parabolic coupled system with initial data given on a line of parabolicity. The coupled system is derived from the Poiseuille flow of full Ericksen–Leslie model in the theory of nematic liquid crystals, which incorporates the crystal and liquid properties of the materials. The main difficulty comes from the degeneracy of the hyperbolic equation, which makes that the system is not continuously differentiable and then the classical methods for the strictly hyperbolic–parabolic coupled systems are invalid. With a choice of a suitable space for the unknown variable of the parabolic equation, we first solve the degenerate hyperbolic problem in a partial hodograph plane and express the smooth solution in terms of the original variables. Based on the smooth solution of the hyperbolic equation, we then construct an iterative sequence for the unknown variable of the parabolic equation by the fundamental solution of the heat equation. Finally, we verify the uniform convergence of the iterative sequence in the selected function space and establish the local existence and uniqueness of classical solutions to the degenerate coupled problem.
We consider the two-dimensional minimisation problem for $\inf \{ E_a(\varphi ):\varphi \in H^1(\mathbb {R}^2)\ \text {and}\ \|\varphi \|_2^2=1\}$, where the energy functional $ E_a(\varphi )$ is a cubic-quintic Schrödinger functional defined by $E_a(\varphi ):=\tfrac 12\int _{\mathbb {R}^2}|\nabla \varphi |^2\,dx-\tfrac 14a\int _{\mathbb {R}^2}|\varphi |^4\,dx+\tfrac 16a^2\int _{\mathbb {R}^2}|\varphi |^6\,dx$. We study the existence and asymptotic behaviour of the ground state. The ground state $\varphi _{a}$ exists if and only if the $L^2$ mass a satisfies $a>a_*={\lVert Q\rVert }^2_2$, where Q is the unique positive radial solution of $-\Delta u+ u-u^3=0$ in $\mathbb {R}^2$. We show the optimal vanishing rate $\int _{\mathbb {R}^2}|\nabla \varphi _{a}|^2\,dx\sim (a-a_*)$ as $a\searrow a_*$ and obtain the limit profile.
We prove that for nonlinear elastic energies with strong enough energetic control of the outer distortion of admissible deformations, almost everywhere global invertibility as constraint can be obtained in the $\Gamma$-limit of the elastic energy with an added nonlocal self-repulsion term with asymptocially vanishing coefficient. The self-repulsion term considered here formally coincides with a Sobolev–Slobodeckiĭ seminorm of the inverse deformation. Variants near the boundary or on the surface of the domain are also studied.
We consider a parabolic-parabolic chemotaxis system with singular chemotactic sensitivity and source functions, which is originally introduced by Short et al to model the spatio-temporal behaviour of urban criminal activities with the particular value of the chemotactic sensitivity parameter $\chi =2$. The available analytical findings for this urban crime model including $\chi =2$ are restricted either to one-dimensional setting, or to initial data and source functions with appropriate smallness, or to initial data and source functions with some radial symmetry. In the present work, our first result asserts that for any $\chi \gt 0$ the initial-boundary value problem of this urban crime model possesses a global generalised solution in the two-dimensional setting, without imposing any small or radial conditions on initial data and source functions. Our second result presents the asymptotic behaviour of such solution, under some additional assumptions on source functions.
We give a comprehensive study of the 3D Navier–Stokes–Brinkman–Forchheimer equations in a bounded domain endowed with the Dirichlet boundary conditions and non-autonomous external forces. This study includes the questions related with the regularity of weak solutions, their dissipativity in higher energy spaces and the existence of the corresponding uniform attractors
Results of stabilization for the higher order of the Kadomtsev-Petviashvili equation are presented in this manuscript. Precisely, we prove with two different approaches that under the presence of a damping mechanism and an internal delay term (anti-damping) the solutions of the Kawahara–Kadomtsev–Petviashvili equation are locally and globally exponentially stable. The main novelty of this work is that we present the optimal constant, as well as the minimal time, that ensures that the energy associated with this system goes to zero exponentially.
For a perturbed generalized Korteweg–de Vries equation with a distributed delay, we prove the existence of both periodic and solitary waves by using the geometric singular perturbation theory and the Melnikov method. We further obtain monotonicity and boundedness of the speed of the periodic wave with respect to the total energy of the unperturbed system. Finally, we establish a relation between the wave speed and the wavelength.
In this paper, we study the hydrostatic approximation for the Navier-Stokes system in a thin domain. When we have convex initial data with Gevrey regularity of optimal index $\frac {3}{2}$ in the x variable and Sobolev regularity in the y variable, we justify the limit from the anisotropic Navier-Stokes system to the hydrostatic Navier-Stokes/Prandtl system. Due to our method in the paper being independent of $\varepsilon $, by the same argument, we also obtain the well-posedness of the hydrostatic Navier-Stokes/Prandtl system in the optimal Gevrey space. Our results improve upon the Gevrey index of $\frac {9}{8}$ found in [15, 35].
We consider the Vlasov equation in any spatial dimension, which has long been known [ZI76, Mor80, Gib81, MW82] to be an infinite-dimensional Hamiltonian system whose bracket structure is of Lie–Poisson type. In parallel, it is classical that the Vlasov equation is a mean-field limit for a pairwise interacting Newtonian system. Motivated by this knowledge, we provide a rigorous derivation of the Hamiltonian structure of the Vlasov equation, both the Hamiltonian functional and Poisson bracket, directly from the many-body problem. One may view this work as a classical counterpart to [MNP+20], which provided a rigorous derivation of the Hamiltonian structure of the cubic nonlinear Schrödinger equation from the many-body problem for interacting bosons in a certain infinite particle number limit, the first result of its kind. In particular, our work settles a question of Marsden, Morrison and Weinstein [MMW84] on providing a ‘statistical basis’ for the bracket structure of the Vlasov equation.
Being able to characterise objects at low frequencies, but in situations where the modelling error in the eddy current approximation of the Maxwell system becomes large, is important for improving current metal detection technologies. Importantly, the modelling error becomes large as the frequency increases, but the accuracy of the eddy current model also depends on the object topology and on its materials, with the error being much larger for certain geometries compared to others of the same size and materials. Additionally, the eddy current model breaks down at much smaller frequencies for highly magnetic conducting materials compared to non-permeable objects (with similar conductivities, sizes and shapes) and, hence, characterising small magnetic objects made of permeable materials using the eddy current at typical frequencies of operation for a metal detector is not always possible. To address this, we derive a new asymptotic expansion for permeable highly conducting objects that is valid for small objects and holds not only for frequencies where the eddy current model is valid but also for situations where the eddy current modelling error becomes large and applying the eddy approximation would be invalid. The leading-order term we derive leads to new forms of object characterisations in terms of polarizability tensor object descriptions where the coefficients can be obtained from solving vectorial transmission problems. We expect these new characterisations to be important when considering objects at greater stand-off distance from the coils, which is important for safety critical applications, such as the identification of landmines, unexploded ordnance and concealed weapons. We also expect our results to be important when characterising artefacts of archaeological and forensic significance at greater depths than the eddy current model allows and to have further applications parking sensors and improving the detection of hidden, out-of-sight, metallic objects.
One of the crucial properties of a quantum system is the existence of bound states. While the existence of eigenvalues below zero, that is, below the essential spectrum, is well understood, the situation of zero energy bound states at the edge of the essential spectrum is far less understood. We present complementary sharp criteria for the existence and nonexistence of zero energy ground states. Our criteria give a straightforward explanation for the folklore that there is a spectral phase transition with critical dimension four, concerning the existence versus nonexistence of zero energy ground states.
We analyse a nonlinear partial differential equation system describing the motion of a microswimmer in a nematic liquid crystal environment. For the microswimmer’s motility, the squirmer model is used in which self-propulsion enters the model through the slip velocity on the microswimmer’s surface. The liquid crystal is described using the well-established Beris–Edwards formulation. In previous computational studies, it was shown that the squirmer, regardless of its initial configuration, eventually orients itself either parallel or perpendicular to the preferred orientation dictated by the liquid crystal. Furthermore, the corresponding solution of the coupled nonlinear system converges to a steady state. In this work, we rigorously establish the existence of steady state and also the finite-time existence for the time-dependent problem in a periodic domain. Finally, we will use a two-scale asymptotic expansion to derive a homogenised model for the collective swimming of squirmers as they reach their steady-state orientation and speed.
We consider a class of weakly interacting particle systems of mean-field type. The interactions between the particles are encoded in a graph sequence, i.e. two particles are interacting if and only if they are connected in the underlying graph. We establish a law of large numbers for the empirical measure of the system that holds whenever the graph sequence is convergent to a graphon. The limit is the solution of a non-linear Fokker–Planck equation weighted by the (possibly random) graphon limit. In contrast with the existing literature, our analysis focuses on both deterministic and random graphons: no regularity assumptions are made on the graph limit and we are able to include general graph sequences such as exchangeable random graphs. Finally, we identify the sequences of graphs, both random and deterministic, for which the associated empirical measure converges to the classical McKean–Vlasov mean-field limit.
In this paper, we show that, with probability
$1$
, a random Beltrami field exhibits chaotic regions that coexist with invariant tori of complicated topologies. The motivation to consider this question, which arises in the study of stationary Euler flows in dimension 3, is V.I. Arnold’s 1965 speculation that a typical Beltrami field exhibits the same complexity as the restriction to an energy hypersurface of a generic Hamiltonian system with two degrees of freedom. The proof hinges on the obtention of asymptotic bounds for the number of horseshoes, zeros and knotted invariant tori and periodic trajectories that a Gaussian random Beltrami field exhibits, which we obtain through a nontrivial extension of the Nazarov–Sodin theory for Gaussian random monochromatic waves and the application of different tools from the theory of dynamical systems, including Kolmogorov–Arnold–Moser (KAM) theory, Melnikov analysis and hyperbolicity. Our results hold both in the case of Beltrami fields on
${\mathbb {R}}^3$
and of high-frequency Beltrami fields on the 3-torus.
In this paper, we investigate the thermal evolution in a one-dimensional bagasse stockpile. The mathematical model involves four unknowns: the temperature, oxygen content, liquid water content and water vapour content. We first nondimensionalize the model to identify dominant terms and so simplify the system. We then calculate solutions for the approximate and full system. It is shown that under certain conditions spontaneous combustion will occur. Most importantly, we show that spontaneous combustion can be avoided by sequential building. To be specific, in a situation where, say, a $4.7\,$m stockpile can spontaneously combust, we could construct a $3\,$m pile and then some days later add another $1.7\,$m to produce a stable $4.7\,$m pile.
The Schrödinger–Poisson system describes standing waves for the nonlinear Schrödinger equation interacting with the electrostatic field. In this paper, we are concerned with the existence of positive ground states to the planar Schrödinger–Poisson system with a nonlinearity having either a subcritical or a critical exponential growth in the sense of Trudinger–Moser. A feature of this paper is that neither the finite steep potential nor the reaction satisfies any symmetry or periodicity hypotheses. The analysis developed in this paper seems to be the first attempt in the study of planar Schrödinger–Poisson systems with lack of symmetry.
The main objective of this paper is to answer the questions posed by Robinson and Sadowski [22, p. 505, Commun. Math. Phys., 2010] for the Navier–Stokes equations. Firstly, we prove that the upper box dimension of the potential singular points set $\mathcal {S}$ of suitable weak solution $u$ belonging to $L^{q}(0,T;L^{p}(\mathbb {R}^{3}))$ for $1\leq \frac {2}{q}+\frac {3}{p}\leq \frac 32$ with $2\leq q<\infty$ and $2< p<\infty$ is at most $\max \{p,q\}(\frac {2}{q}+\frac {3}{p}-1)$ in this system. Secondly, it is shown that $1-2s$ dimension Hausdorff measure of potential singular points set of suitable weak solutions satisfying $u\in L^{2}(0,T;\dot {H}^{s+1}(\mathbb {R}^{3}))$ for $0\leq s\leq \frac 12$ is zero, whose proof relies on Caffarelli–Silvestre's extension. Inspired by Barker–Wang's recent work [1], this further allows us to discuss the Hausdorff dimension of potential singular points set of suitable weak solutions if the gradient of the velocity is under some supercritical regularity.