To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we establish a translation theorem for the generalised analytic Feynman integral of functionals that belong to the Banach algebra ${\mathcal{F}}(C_{a,b}[0,T])$.
In this paper we characterize the mean and the distribution of the first exit time of a Lévy flight from a bounded region in N-dimensional spaces. We characterize tight upper and lower bounds on the tail distribution of the first exit time, and provide the exact asymptotics of the mean first exit time for a given range of step-length distribution parameters.
We extend the infinite-allele simple branching process of Griffiths and Pakes (1988) allowing the offspring to change types and labels. The model is developed and limit theorems are given for the growth of the number of labels of a specific type. We also discuss the asymptotics of the frequency spectrum. Finally, we present an application of the model's use in tumorigenesis.
In this paper we establish the central limit theorem for a class of stochastic partial differential equations and as an application derive this theorem for two widely studied population models: super-Brownian motion and the Fleming-Viot process.
We study k-divisible partition structures, which are families of random set partitions whose block sizes are divisible by an integer k = 1, 2, …. In this setting, exchangeability corresponds to the usual invariance under relabeling by arbitrary permutations; however, for k > 1, the ordinary deletion maps on partitions no longer preserve divisibility, and so a random deletion procedure is needed to obtain a partition structure. We describe explicit Chinese restaurant-type seating rules for generating families of exchangeable k-divisible partitions that are consistent under random deletion. We further introduce the notion of Markovian partition structures, which are ensembles of exchangeable Markov chains on k-divisible partitions that are consistent under a random process of Markovian deletion. The Markov chains we study are reversible and refine the class of Markov chains introduced in Crane (2011).
We consider a branching random walk. Biggins and Kyprianou (2004) proved that, in the boundary case, the associated derivative martingale converges almost surely to a finite nonnegative limit, whose law serves as a fixed point of a smoothing transformation (Mandelbrot's cascade). In this paper, we give a necessary and sufficient condition for the nontriviality of the limit in this boundary case.
We consider long-run averages of additive functionals on infinite discrete-state Markov chains, either continuous or discrete in time. Special cases include long-run average costs or rewards, stationary moments of the components of ergodic multi-dimensional Markov chains, queueing network performance measures, and many others. By exploiting Foster-Lyapunov-type criteria involving drift conditions for the finiteness of long-run averages we determine suitable finite subsets of the state space such that the truncation error is bounded. Illustrative examples demonstrate the application of this method.
In this paper we study the mixing time of certain adaptive Markov chain Monte Carlo (MCMC) algorithms. Under some regularity conditions, we show that the convergence rate of importance resampling MCMC algorithms, measured in terms of the total variation distance, is O(n-1). By means of an example, we establish that, in general, this algorithm does not converge at a faster rate. We also study the interacting tempering algorithm, a simplified version of the equi-energy sampler, and establish that its mixing time is of order O(n-1/2).
We study the asymptotics of the survival probability for the critical and decomposable branching processes in a random environment and prove Yaglom-type limit theorems for these processes. It is shown that such processes possess some properties having no analogues for the decomposable branching processes in a constant environment.
For a class of cell division processes in the Euclidean space ℝd, spatial consistency is investigated. This addresses the problem whether the distribution of the generated structures, restricted to a bounded set V, depends on the choice of a larger region W ⊃ V where the construction of the cell division process is performed. This can also be understood as the problem of boundary effects in the cell division procedure. It is known that the STIT tessellations are spatially consistent. In the present paper it is shown that, within a reasonable wide class of cell division processes, the STIT tessellations are the only ones that are consistent.
In this paper we consider the beta(2 − α, α)-coalescents with 1 < α < 2 and study the moments of external branches, in particular, the total external branch length of an initial sample of n individuals. For this class of coalescents, it has been proved that nα-1T(n) →DT, where T(n) is the length of an external branch chosen at random and T is a known nonnegative random variable. For beta(2 − α, α)-coalescents with 1 < α < 2, we obtain limn→+∞n3α-5 𝔼(Lext(n) − n2-α𝔼T)2 = ((α − 1)Γ(α + 1))2Γ(4 − α) / ((3 − α)Γ(4 − 2α)).
We study congestion periods in a finite fluid buffer when the net input rate depends upon a recurrent Markov process; congestion occurs when the buffer content is equal to the buffer capacity. Similarly to O'Reilly and Palmowski (2013), we consider the duration of congestion periods as well as the associated volume of lost information. While these quantities are characterized by their Laplace transforms in that paper, we presently derive their distributions in a typical stationary busy period of the buffer. Our goal is to compute the exact expression of the loss probability in the system, which is usually approximated by the probability that the occupancy of the infinite buffer is greater than the buffer capacity under consideration. Moreover, by using general results of the theory of Markovian arrival processes, we show that the duration of congestion and the volume of lost information have phase-type distributions.
Consider an absolutely continuous distribution on [0, ∞) with finite mean μ and hazard rate function h(t) ≤ b for all t. For bμ close to 1, we would expect F to be approximately exponential. In this paper we obtain sharp bounds for the Kolmogorov distance between F and an exponential distribution with mean μ, as well as between F and an exponential distribution with failure rate b. We apply these bounds to several examples. Applications are presented to geometric convolutions, birth and death processes, first-passage times, and to decreasing mean residual life distributions.
A compound Poisson process whose randomized time is an independent Poisson process is called a compound Poisson process with Poisson subordinator. We provide its probability distribution, which is expressed in terms of the Bell polynomials, and investigate in detail both the special cases in which the compound Poisson process has exponential jumps and normal jumps. Then for the iterated Poisson process we discuss some properties and provide convergence results to a Poisson process. The first-crossing time problem for the iterated Poisson process is finally tackled in the cases of (i) a decreasing and constant boundary, where we provide some closed-form results, and (ii) a linearly increasing boundary, where we propose an iterative procedure to compute the first-crossing time density and survival functions.
We consider a production-inventory model operating in a stochastic environment that is modulated by a finite state continuous-time Markov chain. When the inventory level reaches zero, an order is placed from an external supplier. The costs (purchasing and holding costs) are modulated by the state at the order epoch time. Applying a matrix analytic approach, fluid flow techniques, and martingales, we develop methods to obtain explicit equations for these cost functionals in the discounted case and under the long-run average criterion. Finally, we extend the model to allow backlogging.
This paper is concerned with the solution of the optimal stopping problem associated to the value of American options driven by continuous-time Markov chains. The value-function of an American option in this setting is characterised as the unique solution (in a distributional sense) of a system of variational inequalities. Furthermore, with continuous and smooth fit principles not applicable in this discrete state-space setting, a novel explicit characterisation is provided of the optimal stopping boundary in terms of the generator of the underlying Markov chain. Subsequently, an algorithm is presented for the valuation of American options under Markov chain models. By application to a suitably chosen sequence of Markov chains, the algorithm provides an approximate valuation of an American option under a class of Markov models that includes diffusion models, exponential Lévy models, and stochastic differential equations driven by Lévy processes. Numerical experiments for a range of different models suggest that the approximation algorithm is flexible and accurate. A proof of convergence is also provided.
This paper deals with the first passage optimality and variance minimisation problems of discrete-time Markov decision processes (MDPs) with varying discount factors and unbounded rewards/costs. First, under suitable conditions slightly weaker than those in the previous literature on the standard (infinite horizon) discounted MDPs, we establish the existence and characterisation of the first passage expected-optimal stationary policies. Second, to further distinguish the expected-optimal stationary policies, we introduce the variance minimisation problem, prove that it is equivalent to a new first passage optimality problem of MDPs, and, thus, show the existence of a variance-optimal policy that minimises the variance over the set of all first passage expected-optimal stationary policies. Finally, we use a computableexample to illustrate our main results and also to show the difference between the first passage optimality here and the standard discount optimality of MDPs in the previous literature.
We provide explicit expressions for the constants involved in the characterisation of ergodicity of subgeometric Markov chains. The constants are determined in terms of those appearing in the assumed drift and one-step minorisation conditions. The results are fundamental for the study of some algorithms where uniform bounds for these constants are needed for a family of Markov kernels. Our results accommodate also some classes of inhomogeneous chains.
In this paper we investigate first passage percolation on an inhomogeneous random graph model introduced by Bollobás et al. (2007). Each vertex in the graph has a type from a type space, and edge probabilities are independent, but depend on the types of the end vertices. Each edge is given an independent exponential weight. We determine the distribution of the weight of the shortest path between uniformly chosen vertices in the giant component and show that the hopcount, i.e. the number of edges on this minimal-weight path, properly normalized, follows a central limit theorem. We handle the cases where the average number of neighbors λ̃n of a vertex tends to a finite λ̃ in full generality and consider λ̃ = ∞ under mild assumptions. This paper is a generalization of the paper of Bhamidi et al. (2011), where first passage percolation is explored on the Erdős-Rényi graphs.