To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the bilateral preference graphs $\mathit{LK}(n, k)$ of La and Kabkab, obtained as follows. Put independent and uniform [0, 1] weights on the edges of the complete graph $K_n$. Then, each edge (i, j) is included in $\mathit{LK}(n,k)$ if it is bilaterally preferred, in the sense that it is among the k edges of lowest weight incident to vertex i, and among the k edges of lowest weight incident to vertex j. We show that $k = \log(n)$ is the connectivity threshold, solving a conjecture of La and Kabkab, and obtaining finer results about the window. We also investigate the asymptotic behavior of the average degree of vertices in $\mathit{LK}(n, k)$ as $n\rightarrow\infty$.
For each of the four particle processes given by Dieker and Warren, we show the n-step transition kernels are given by the (dual) (weak) refined symmetric Grothendieck functions up to a simple overall factor. We do so by encoding the particle dynamics as the basis of free fermions first introduced by the first author, which we translate into deformed Schur operators acting on partitions. We provide a direct combinatorial proof of this relationship in each case, where the defining tableaux naturally describe the particle motions.
We consider an inhomogeneous Erdős–Rényi random graph ensemble with exponentially decaying random disconnection probabilities determined by an independent and identically distributed field of variables with heavy tails and infinite mean associated with the vertices of the graph. This model was recently investigated in the physics literature (Garuccio, Lalli, and Garlaschelli 2023) as a scale-invariant random graph within the context of network renormalization. From a mathematical perspective, the model fits in the class of scale-free inhomogeneous random graphs whose asymptotic geometrical features have recently attracted interest. While for this type of graph several results are known when the underlying vertex variables have finite mean and variance, here instead we consider the case of one-sided stable variables with necessarily infinite mean. To simplify our analysis, we assume that the variables are sampled from a Pareto distribution with parameter $\alpha\in(0,1)$. We start by characterizing the asymptotic distributions of the typical degrees and some related observables. In particular, we show that the degree of a vertex converges in distribution, after proper scaling, to a mixed Poisson law. We then show that correlations among degrees of different vertices are asymptotically non-vanishing, but at the same time a form of asymptotic tail independence is found when looking at the behavior of the joint Laplace transform around zero. Moreover, we present some findings concerning the asymptotic density of wedges and triangles, and show a cross-over for the existence of dust (i.e. disconnected vertices).
We prove two results concerning percolation on general graphs.
• We establish the converse of the classical Peierls argument: if the critical parameter for (uniform) percolation satisfies $p_c<1$, then the number of minimal cutsets of size n separating a given vertex from infinity is bounded above exponentially in n. This resolves a conjecture of Babson and Benjamini from 1999.
• We prove that $p_c<1$ for every uniformly transient graph. This solves a problem raised by Duminil-Copin, Goswami, Raoufi, Severo, and Yadin, and provides a new proof that $p_c<1$ for every transitive graph of superlinear growth.
We prove that for every locally stable and tempered pair potential $\phi$ with bounded range, there exists a unique infinite-volume Gibbs point process on $\mathbb{R}^{d}$ for every activity $\lambda < ({e}^{L} \hat{C}_{\phi})^{-1}$, where L is the local stability constant and $\hat{C}_{\phi} \,:\!=\, \sup_{x \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}} 1 - {e}^{-\left\lvert \phi(x, y) \right\rvert} \mathrm{d} y$ is the (weak) temperedness constant. Our result extends the uniqueness regime that is given by the classical Ruelle–Penrose bound by a factor of at least ${e}$, where the improvements become larger as the negative parts of the potential become more prominent (i.e. for attractive interactions at low temperature). Our technique is based on the approach of Dyer et al. (2004 Random Structures & Algorithms24, 461–479): We show that for any bounded region and any boundary condition, we can construct a Markov process (in our case spatial birth–death dynamics) that converges rapidly to the finite-volume Gibbs point process while the effects of the boundary condition propagate sufficiently slowly. As a result, we obtain a spatial mixing property that implies uniqueness of the infinite-volume Gibbs measure.
A non-uniqueness phase for infinite clusters is proven for a class of marked random connection models (RCMs) on the d-dimensional hyperbolic space, ${\mathbb{H}^d}$, in a high volume-scaling regime. The approach taken in this paper utilizes the spherical transform on ${\mathbb{H}^d}$ to diagonalize convolution by the adjacency function and the two-point function and bound their $L^2\to L^2$ operator norms. Under some circumstances, this spherical transform approach also provides bounds on the triangle diagram that allows for a derivation of certain mean-field critical exponents. In particular, the results are applied to some Boolean and weight-dependent hyperbolic RCMs. While most of the paper is concerned with the high volume-scaling regime, the existence of the non-uniqueness phase is also proven without this scaling for some RCMs whose resulting graphs are almost surely not locally finite.
The hard-core model has as its configurations the independent sets of some graph instance $G$. The probability distribution on independent sets is controlled by a ‘fugacity’ $\lambda \gt 0$, with higher $\lambda$ leading to denser configurations. We investigate the mixing time of Glauber (single-site) dynamics for the hard-core model on restricted classes of bounded-degree graphs in which a particular graph $H$ is excluded as an induced subgraph. If $H$ is a subdivided claw then, for all $\lambda$, the mixing time is $O(n\log n)$, where $n$ is the order of $G$. This extends a result of Chen and Gu for claw-free graphs. When $H$ is a path, the set of possible instances is finite. For all other $H$, the mixing time is exponential in $n$ for sufficiently large $\lambda$, depending on $H$ and the maximum degree of $G$.
We consider the random series–parallel graph introduced by Hambly and Jordan (2004 Adv. Appl. Probab.36, 824–838), which is a hierarchical graph with a parameter $p\in [0, \, 1]$. The graph is built recursively: at each step, every edge in the graph is either replaced with probability p by a series of two edges, or with probability $1-p$ by two parallel edges, and the replacements are independent of each other and of everything up to then. At the nth step of the recursive procedure, the distance between the extremal points on the graph is denoted by $D_n (p)$. It is known that $D_n(p)$ possesses a phase transition at $p=p_c \;:\!=\;\frac{1}{2}$; more precisely, $\frac{1}{n}\log {{\mathbb{E}}}[D_n(p)] \to \alpha(p)$ when $n \to \infty$, with $\alpha(p) >0$ for $p>p_c$ and $\alpha(p)=0$ for $p\le p_c$. We study the exponent $\alpha(p)$ in the slightly supercritical regime $p=p_c+\varepsilon$. Our main result says that as $\varepsilon\to 0^+$, $\alpha(p_c+\varepsilon)$ behaves like $\sqrt{\zeta(2) \, \varepsilon}$, where $\zeta(2) \;:\!=\; \frac{\pi^2}{6}$.
Recently, there has been much progress in understanding stationary measures for colored (also called multi-species or multi-type) interacting particle systems, motivated by asymptotic phenomena and rich underlying algebraic and combinatorial structures (such as nonsymmetric Macdonald polynomials). In this paper, we present a unified approach to constructing stationary measures for most of the known colored particle systems on the ring and the line, including (1) the Asymmetric Simple Exclusion Process (multi-species ASEP, or mASEP); (2) the $q$-deformed Totally Asymmetric Zero Range Process (TAZRP) also known as the $q$-Boson particle system; (3) the $q$-deformed Pushing Totally Asymmetric Simple Exclusion Process ($q$-PushTASEP). Our method is based on integrable stochastic vertex models and the Yang–Baxter equation. We express the stationary measures as partition functions of new ‘queue vertex models’ on the cylinder. The stationarity property is a direct consequence of the Yang–Baxter equation. For the mASEP on the ring, a particular case of our vertex model is equivalent to the multiline queues of Martin (Stationary distributions of the multi-type ASEP, Electron. J. Probab. 25 (2020), 1–41). For the colored $q$-Boson process and the $q$-PushTASEP on the ring, we recover and generalize known stationary measures constructed using multiline queues or other methods by Ayyer, Mandelshtam and Martin (Modified Macdonald polynomials and the multispecies zero range process: II, Algebr. Comb. 6 (2022), 243–284; Modified Macdonald polynomials and the multispecies zero-range process: I, Algebr. Comb. 6 (2023), 243–284) and Bukh and Cox (Periodic words, common subsequences and frogs, Ann. Appl. Probab. 32 (2022), 1295–1332). Our proofs of stationarity use the Yang–Baxter equation and bypass the Matrix Product Ansatz (used for the mASEP by Prolhac, Evans and Mallick (The matrix product solution of the multispecies partially asymmetric exclusion process, J. Phys. A. 42 (2009), 165004)). On the line and in a quadrant, we use the Yang–Baxter equation to establish a general colored Burke’s theorem, which implies that suitable specializations of our queue vertex models produce stationary measures for particle systems on the line. We also compute the colored particle currents in stationarity.
We analyze generating functions for trees and for connected subgraphs on the complete graph, and identify a single scaling profile which applies for both generating functions in a critical window. Our motivation comes from the analysis of the finite-size scaling of lattice trees and lattice animals on a high-dimensional discrete torus, for which we conjecture that the identical profile applies in dimensions $d \ge 8$.
We define a random graph obtained by connecting each point of $\mathbb{Z}^d$ independently and uniformly to a fixed number $1 \leq k \leq 2d$ of its nearest neighbors via a directed edge. We call this graph the directed k-neighbor graph. Two natural associated undirected graphs are the undirected and the bidirectional k-neighbor graph, where we connect two vertices by an undirected edge whenever there is a directed edge in the directed k-neighbor graph between the vertices in at least one, respectively precisely two, directions. For these graphs we study the question of percolation, i.e. the existence of an infinite self-avoiding path. Using different kinds of proof techniques for different classes of cases, we show that for $k=1$ even the undirected k-neighbor graph never percolates, while the directed k-neighbor graph percolates whenever $k \geq d+1$, $k \geq 3$, and $d \geq 5$, or $k \geq 4$ and $d=4$. We also show that the undirected 2-neighbor graph percolates for $d=2$, the undirected 3-neighbor graph percolates for $d=3$, and we provide some positive and negative percolation results regarding the bidirectional graph as well. A heuristic argument for high dimensions indicates that this class of models is a natural discrete analogue of the k-nearest-neighbor graphs studied in continuum percolation, and our results support this interpretation.
We model voting behaviour in the multi-group setting of a two-tier voting system using sequences of de Finetti measures. Our model is defined by using the de Finetti representation of a probability measure (i.e. as a mixture of conditionally independent probability measures) describing voting behaviour. The de Finetti measure describes the interaction between voters and possible outside influences on them. We assume that for each population size there is a (potentially) different de Finetti measure, and as the population grows, the sequence of de Finetti measures converges weakly to the Dirac measure at the origin, representing a tendency toward weakening social cohesion as the population grows large. The resulting model covers a wide variety of behaviours, ranging from independent voting in the limit under fast convergence, a critical convergence speed with its own pattern of behaviour, to a subcritical convergence speed which yields a model in line with empirical evidence of real-world voting data, contrary to previous probabilistic models used in the study of voting. These models can be used, e.g., to study the problem of optimal voting weights in two-tier voting systems.
For each uniformity $k \geq 3$, we construct $k$ uniform linear hypergraphs $G$ with arbitrarily large maximum degree $\Delta$ whose independence polynomial $Z_G$ has a zero $\lambda$ with $\left \vert \lambda \right \vert = O\left (\frac {\log \Delta }{\Delta }\right )$. This disproves a recent conjecture of Galvin, McKinley, Perkins, Sarantis, and Tetali.
We study the many-body localization (MBL) properties of the Heisenberg XXZ spin-$\frac 12$ chain in a random magnetic field. We prove that the system exhibits localization in any given energy interval at the bottom of the spectrum in a nontrivial region of the parameter space. This region, which includes weak interaction and strong disorder regimes, is independent of the size of the system and depends only on the energy interval. Our approach is based on the reformulation of the localization problem as an expression of quasi-locality for functions of the random many-body XXZ Hamiltonian. This allows us to extend the fractional moment method for proving localization, previously derived in a single-particle localization context, to the many-body setting.
An identity that is reminiscent of the Littlewood identity plays a fundamental role in recent proofs of the facts that alternating sign triangles are equinumerous with totally symmetric self-complementary plane partitions and that alternating sign trapezoids are equinumerous with holey cyclically symmetric lozenge tilings of a hexagon. We establish a bounded version of a generalization of this identity. Further, we provide combinatorial interpretations of both sides of the identity. The ultimate goal would be to construct a combinatorial proof of this identity (possibly via an appropriate variant of the Robinson-Schensted-Knuth correspondence) and its unbounded version, as this would improve the understanding of the mysterious relation between alternating sign trapezoids and plane partition objects.
We consider the constrained-degree percolation model in a random environment (CDPRE) on the square lattice. In this model, each vertex v has an independent random constraint $\kappa_v$ which takes the value $j\in \{0,1,2,3\}$ with probability $\rho_j$. The dynamics is as follows: at time $t=0$ all edges are closed; each edge e attempts to open at a random time $U(e)\sim \mathrm{U}(0,1]$, independently of all the other edges. It succeeds if at time U(e) both its end vertices have degrees strictly smaller than their respective constraints. We obtain exponential decay of the radius of the open cluster of the origin at all times when its expected size is finite. Since CDPRE is dominated by Bernoulli percolation, this result is meaningful only if the supremum of all values of t for which the expected size of the open cluster of the origin is finite is larger than $\frac12$. We prove this last fact by showing a sharp phase transition for an intermediate model.
In this short note, we review results on equilibrium shapes of minimizers to the sessile drop problem. More precisely, we study the Winterbottom problem and prove that the Winterbottom shape is indeed optimal. The arguments presented here are based on relaxation and the (anisotropic) isoperimetric inequality.
Interacting particle systems (IPSs) are a very important class of dynamical systems, arising in different domains like biology, physics, sociology and engineering. In many applications, these systems can be very large, making their simulation and control, as well as related numerical tasks, very challenging. Kernel methods, a powerful tool in machine learning, offer promising approaches for analyzing and managing IPS. This paper provides a comprehensive study of applying kernel methods to IPS, including the development of numerical schemes and the exploration of mean-field limits. We present novel applications and numerical experiments demonstrating the effectiveness of kernel methods for surrogate modelling and state-dependent feature learning in IPS. Our findings highlight the potential of these methods for advancing the study and control of large-scale IPS.
We derive an asymptotic expansion for the critical percolation density of the random connection model as the dimension of the encapsulating space tends to infinity. We calculate rigorously the first expansion terms for the Gilbert disk model, the hyper-cubic model, the Gaussian connection kernel, and a coordinate-wise Cauchy kernel.
We study the low-temperature $(2+1)$D solid-on-solid model on with zero boundary conditions and nonnegative heights (a floor at height $0$). Caputo et al. (2016) established that this random surface typically admits either $\mathfrak h $ or $\mathfrak h+1$ many nested macroscopic level line loops $\{\mathcal L_i\}_{i\geq 0}$ for an explicit $\mathfrak h\asymp \log L$, and its top loop $\mathcal L_0$ has cube-root fluctuations: For example, if $\rho (x)$ is the vertical displacement of $\mathcal L_0$ from the bottom boundary point $(x,0)$, then $\max \rho (x) = L^{1/3+o(1)}$ over . It is believed that rescaling $\rho $ by $L^{1/3}$ and $I_0$ by $L^{2/3}$ would yield a limit law of a diffusion on $[-1,1]$. However, no nontrivial lower bound was known on $\rho (x)$ for a fixed $x\in I_0$ (e.g., $x=\frac L2$), let alone on $\min \rho (x)$ in $I_0$, to complement the bound on $\max \rho (x)$. Here, we show a lower bound of the predicted order $L^{1/3}$: For every $\epsilon>0$, there exists $\delta>0$ such that $\min _{x\in I_0} \rho (x) \geq \delta L^{1/3}$ with probability at least $1-\epsilon $. The proof relies on the Ornstein–Zernike machinery due to Campanino–Ioffe–Velenik and a result of Ioffe, Shlosman and Toninelli (2015) that rules out pinning in Ising polymers with modified interactions along the boundary. En route, we refine the latter result into a Brownian excursion limit law, which may be of independent interest. We further show that in a $ K L^{2/3}\times K L^{2/3}$ box with boundary conditions $\mathfrak h-1,\mathfrak h,\mathfrak h,\mathfrak h$ (i.e., $\mathfrak h-1$ on the bottom side and $\mathfrak h$ elsewhere), the limit of $\rho (x)$ as $K,L\to \infty $ is a Ferrari–Spohn diffusion.