We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We model voting behaviour in the multi-group setting of a two-tier voting system using sequences of de Finetti measures. Our model is defined by using the de Finetti representation of a probability measure (i.e. as a mixture of conditionally independent probability measures) describing voting behaviour. The de Finetti measure describes the interaction between voters and possible outside influences on them. We assume that for each population size there is a (potentially) different de Finetti measure, and as the population grows, the sequence of de Finetti measures converges weakly to the Dirac measure at the origin, representing a tendency toward weakening social cohesion as the population grows large. The resulting model covers a wide variety of behaviours, ranging from independent voting in the limit under fast convergence, a critical convergence speed with its own pattern of behaviour, to a subcritical convergence speed which yields a model in line with empirical evidence of real-world voting data, contrary to previous probabilistic models used in the study of voting. These models can be used, e.g., to study the problem of optimal voting weights in two-tier voting systems.
For each uniformity $k \geq 3$, we construct $k$ uniform linear hypergraphs $G$ with arbitrarily large maximum degree $\Delta$ whose independence polynomial $Z_G$ has a zero $\lambda$ with $\left \vert \lambda \right \vert = O\left (\frac {\log \Delta }{\Delta }\right )$. This disproves a recent conjecture of Galvin, McKinley, Perkins, Sarantis, and Tetali.
We study the many-body localization (MBL) properties of the Heisenberg XXZ spin-$\frac 12$ chain in a random magnetic field. We prove that the system exhibits localization in any given energy interval at the bottom of the spectrum in a nontrivial region of the parameter space. This region, which includes weak interaction and strong disorder regimes, is independent of the size of the system and depends only on the energy interval. Our approach is based on the reformulation of the localization problem as an expression of quasi-locality for functions of the random many-body XXZ Hamiltonian. This allows us to extend the fractional moment method for proving localization, previously derived in a single-particle localization context, to the many-body setting.
An identity that is reminiscent of the Littlewood identity plays a fundamental role in recent proofs of the facts that alternating sign triangles are equinumerous with totally symmetric self-complementary plane partitions and that alternating sign trapezoids are equinumerous with holey cyclically symmetric lozenge tilings of a hexagon. We establish a bounded version of a generalization of this identity. Further, we provide combinatorial interpretations of both sides of the identity. The ultimate goal would be to construct a combinatorial proof of this identity (possibly via an appropriate variant of the Robinson-Schensted-Knuth correspondence) and its unbounded version, as this would improve the understanding of the mysterious relation between alternating sign trapezoids and plane partition objects.
We consider the constrained-degree percolation model in a random environment (CDPRE) on the square lattice. In this model, each vertex v has an independent random constraint $\kappa_v$ which takes the value $j\in \{0,1,2,3\}$ with probability $\rho_j$. The dynamics is as follows: at time $t=0$ all edges are closed; each edge e attempts to open at a random time $U(e)\sim \mathrm{U}(0,1]$, independently of all the other edges. It succeeds if at time U(e) both its end vertices have degrees strictly smaller than their respective constraints. We obtain exponential decay of the radius of the open cluster of the origin at all times when its expected size is finite. Since CDPRE is dominated by Bernoulli percolation, this result is meaningful only if the supremum of all values of t for which the expected size of the open cluster of the origin is finite is larger than $\frac12$. We prove this last fact by showing a sharp phase transition for an intermediate model.
In this short note, we review results on equilibrium shapes of minimizers to the sessile drop problem. More precisely, we study the Winterbottom problem and prove that the Winterbottom shape is indeed optimal. The arguments presented here are based on relaxation and the (anisotropic) isoperimetric inequality.
Interacting particle systems (IPSs) are a very important class of dynamical systems, arising in different domains like biology, physics, sociology and engineering. In many applications, these systems can be very large, making their simulation and control, as well as related numerical tasks, very challenging. Kernel methods, a powerful tool in machine learning, offer promising approaches for analyzing and managing IPS. This paper provides a comprehensive study of applying kernel methods to IPS, including the development of numerical schemes and the exploration of mean-field limits. We present novel applications and numerical experiments demonstrating the effectiveness of kernel methods for surrogate modelling and state-dependent feature learning in IPS. Our findings highlight the potential of these methods for advancing the study and control of large-scale IPS.
We derive an asymptotic expansion for the critical percolation density of the random connection model as the dimension of the encapsulating space tends to infinity. We calculate rigorously the first expansion terms for the Gilbert disk model, the hyper-cubic model, the Gaussian connection kernel, and a coordinate-wise Cauchy kernel.
We study the low-temperature $(2+1)$D solid-on-solid model on with zero boundary conditions and nonnegative heights (a floor at height $0$). Caputo et al. (2016) established that this random surface typically admits either $\mathfrak h $ or $\mathfrak h+1$ many nested macroscopic level line loops $\{\mathcal L_i\}_{i\geq 0}$ for an explicit $\mathfrak h\asymp \log L$, and its top loop $\mathcal L_0$ has cube-root fluctuations: For example, if $\rho (x)$ is the vertical displacement of $\mathcal L_0$ from the bottom boundary point $(x,0)$, then $\max \rho (x) = L^{1/3+o(1)}$ over . It is believed that rescaling $\rho $ by $L^{1/3}$ and $I_0$ by $L^{2/3}$ would yield a limit law of a diffusion on $[-1,1]$. However, no nontrivial lower bound was known on $\rho (x)$ for a fixed $x\in I_0$ (e.g., $x=\frac L2$), let alone on $\min \rho (x)$ in $I_0$, to complement the bound on $\max \rho (x)$. Here, we show a lower bound of the predicted order $L^{1/3}$: For every $\epsilon>0$, there exists $\delta>0$ such that $\min _{x\in I_0} \rho (x) \geq \delta L^{1/3}$ with probability at least $1-\epsilon $. The proof relies on the Ornstein–Zernike machinery due to Campanino–Ioffe–Velenik and a result of Ioffe, Shlosman and Toninelli (2015) that rules out pinning in Ising polymers with modified interactions along the boundary. En route, we refine the latter result into a Brownian excursion limit law, which may be of independent interest. We further show that in a $ K L^{2/3}\times K L^{2/3}$ box with boundary conditions $\mathfrak h-1,\mathfrak h,\mathfrak h,\mathfrak h$ (i.e., $\mathfrak h-1$ on the bottom side and $\mathfrak h$ elsewhere), the limit of $\rho (x)$ as $K,L\to \infty $ is a Ferrari–Spohn diffusion.
The spectrum and orthogonal eigenbasis are computed of a tridiagonal matrix encoding a finite-dimensional reduction of the difference Lamé equation at the single-gap integral value of the coupling parameter. This entails the exact solution, in terms of single-gap difference Lamé wave functions, for the spectral problem of a corresponding open inhomogeneous isotropic $XY$ chain with coupling constants built from elliptic integers.
We study computational aspects of repulsive Gibbs point processes, which are probabilistic models of interacting particles in a finite-volume region of space. We introduce an approach for reducing a Gibbs point process to the hard-core model, a well-studied discrete spin system. Given an instance of such a point process, our reduction generates a random graph drawn from a natural geometric model. We show that the partition function of a hard-core model on graphs generated by the geometric model concentrates around the partition function of the Gibbs point process. Our reduction allows us to use a broad range of algorithms developed for the hard-core model to sample from the Gibbs point process and approximate its partition function. This is, to the extent of our knowledge, the first approach that deals with pair potentials of unbounded range.
We determine the order of the k-core in a large class of dense graph sequences. Let $G_n$ be a sequence of undirected, n-vertex graphs with edge weights $\{a^n_{i,j}\}_{i,j \in [n]}$ that converges to a graphon $W\colon[0,1]^2 \to [0,+\infty)$ in the cut metric. Keeping an edge (i,j) of $G_n$ with probability ${a^n_{i,j}}/{n}$ independently, we obtain a sequence of random graphs $G_n({1}/{n})$. Using a branching process and the theory of dense graph limits, under mild assumptions we obtain the order of the k-core of random graphs $G_n({1}/{n})$. Our result can also be used to obtain the threshold of appearance of a k-core of order n.
We investigate the hyperuniformity of marked Gibbs point processes that have weak dependencies among distant points whilst the interactions of close points are kept arbitrary. Various stability and range assumptions are imposed on the Papangelou intensity in order to prove that the resulting point process is not hyperuniform. The scope of our results covers many frequently used models, including Gibbs point processes with a superstable, lower-regular, integrable pair potential, as well as the Widom–Rowlinson model with random radii and Gibbs point processes with interactions based on Voronoi tessellations and nearest-neighbour graphs.
Many connections and dualities in representation theory and Lie theory can be explained using quasi-hereditary covers in the sense of Rouquier. Recent work by the first-named author shows that relative dominant (and codominant) dimensions are natural tools to classify and distinguish distinct quasi-hereditary covers of a finite-dimensional algebra. In this paper, we prove that the relative dominant dimension of a quasi-hereditary algebra, possessing a simple preserving duality, with respect to a direct summand of the characteristic tilting module is always an even number or infinite and that this homological invariant controls the quality of quasi-hereditary covers that possess a simple preserving duality. To resolve the Temperley–Lieb algebras, we apply this result to the class of Schur algebras $S(2, d)$ and their $q$-analogues. Our second main result completely determines the relative dominant dimension of $S(2, d)$ with respect to $Q=V^{\otimes d}$, the $d$-th tensor power of the natural two-dimensional module. As a byproduct, we deduce that Ringel duals of $q$-Schur algebras $S(2,d)$ give rise to quasi-hereditary covers of Temperley–Lieb algebras. Further, we obtain precisely when the Temperley–Lieb algebra is Morita equivalent to the Ringel dual of the $q$-Schur algebra $S(2, d)$ and precisely how far these two algebras are from being Morita equivalent, when they are not. These results are compatible with the integral setup, and we use them to deduce that the Ringel dual of a $q$-Schur algebra over the ring of Laurent polynomials over the integers together with some projective module is the best quasi-hereditary cover of the integral Temperley–Lieb algebra.
We give algorithms for approximating the partition function of the ferromagnetic $q$-color Potts model on graphs of maximum degree $d$. Our primary contribution is a fully polynomial-time approximation scheme for $d$-regular graphs with an expansion condition at low temperatures (that is, bounded away from the order-disorder threshold). The expansion condition is much weaker than in previous works; for example, the expansion exhibited by the hypercube suffices. The main improvements come from a significantly sharper analysis of standard polymer models; we use extremal graph theory and applications of Karger’s algorithm to count cuts that may be of independent interest. It is #BIS-hard to approximate the partition function at low temperatures on bounded-degree graphs, so our algorithm can be seen as evidence that hard instances of #BIS are rare. We also obtain efficient algorithms in the Gibbs uniqueness region for bounded-degree graphs. While our high-temperature proof follows more standard polymer model analysis, our result holds in the largest-known range of parameters $d$ and $q$.
Given the full shift over a countable state space on a countable amenable group, we develop its thermodynamic formalism. First, we introduce the concept of pressure and, using tiling techniques, prove its existence and further properties, such as an infimum rule. Next, we extend the definitions of different notions of Gibbs measures and prove their existence and equivalence, given some regularity and normalization criteria on the potential. Finally, we provide a family of potentials that nontrivially satisfy the conditions for having this equivalence and a nonempty range of inverse temperatures where uniqueness holds.
We consider bond percolation on high-dimensional product graphs $G=\square _{i=1}^tG^{(i)}$, where $\square$ denotes the Cartesian product. We call the $G^{(i)}$ the base graphs and the product graph $G$ the host graph. Very recently, Lichev (J. Graph Theory, 99(4):651–670, 2022) showed that, under a mild requirement on the isoperimetric properties of the base graphs, the component structure of the percolated graph $G_p$ undergoes a phase transition when $p$ is around $\frac{1}{d}$, where $d$ is the average degree of the host graph.
In the supercritical regime, we strengthen Lichev’s result by showing that the giant component is in fact unique, with all other components of order $o(|G|)$, and determining the sharp asymptotic order of the giant. Furthermore, we answer two questions posed by Lichev (J. Graph Theory, 99(4):651–670, 2022): firstly, we provide a construction showing that the requirement of bounded degree is necessary for the likely emergence of a linear order component; secondly, we show that the isoperimetric requirement on the base graphs can be, in fact, super-exponentially small in the dimension. Finally, in the subcritical regime, we give an example showing that in the case of irregular high-dimensional product graphs, there can be a polynomially large component with high probability, very much unlike the quantitative behaviour seen in the Erdős-Rényi random graph and in the percolated hypercube, and in fact in any regular high-dimensional product graphs, as shown by the authors in a companion paper (Percolation on high-dimensional product graphs. arXiv:2209.03722, 2022).
We determine almost sure limits of rescaled intrinsic volumes of the construction steps of fractal percolation in ${\mathbb R}^d$ for any dimension $d\geq 1$. We observe a factorization of these limit variables which allows one, in particular, to determine their expectations and covariance structure. We also show the convergence of the rescaled expectations and variances of the intrinsic volumes of the construction steps to the expectations and variances of the limit variables, and we give rates for this convergence in some cases. These results significantly extend our previous work, which addressed only limits of expectations of intrinsic volumes.
The independence polynomial originates in statistical physics as the partition function of the hard-core model. The location of the complex zeros of the polynomial is related to phase transitions, and plays an important role in the design of efficient algorithms to approximately compute evaluations of the polynomial.
In this paper we directly relate the location of the complex zeros of the independence polynomial to computational hardness of approximating evaluations of the independence polynomial. We do this by moreover relating the location of zeros to chaotic behaviour of a naturally associated family of rational functions; the occupation ratios.
A spread-out lattice animal is a finite connected set of edges in $\{\{x,y\}\subset \mathbb{Z}^d\;:\;0\lt \|x-y\|\le L\}$. A lattice tree is a lattice animal with no loops. The best estimate on the critical point $p_{\textrm{c}}$ so far was achieved by Penrose (J. Stat. Phys. 77, 3–15, 1994) : $p_{\textrm{c}}=1/e+O(L^{-2d/7}\log L)$ for both models for all $d\ge 1$. In this paper, we show that $p_{\textrm{c}}=1/e+CL^{-d}+O(L^{-d-1})$ for all $d\gt 8$, where the model-dependent constant $C$ has the random-walk representation
where $U^{*n}$ is the $n$-fold convolution of the uniform distribution on the $d$-dimensional ball $\{x\in{\mathbb R}^d\;: \|x\|\le 1\}$. The proof is based on a novel use of the lace expansion for the 2-point function and detailed analysis of the 1-point function at a certain value of $p$ that is designed to make the analysis extremely simple.