We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we study the treewidth of the random geometric graph, obtained by dropping n points onto the square [0,√n]2 and connecting pairs of points by an edge if their distance is at most r=r(n). We prove a conjecture of Mitsche and Perarnau (2014) stating that, with probability going to 1 as n→∞, the treewidth of the random geometric graph is 𝜣(r√n) when lim inf r>rc, where rc is the critical radius for the appearance of the giant component. The proof makes use of a comparison to standard bond percolation and with a little bit of extra work we are also able to show that, with probability tending to 1 as k→∞, the treewidth of the graph we obtain by retaining each edge of the k×k grid with probability p is 𝜣(k) if p>½ and 𝜣(√log k) if p<½.
A point process is R-dependent if it behaves independently beyond the minimum distance R. In this paper we investigate uniform positive lower bounds on the avoidance functions of R-dependent simple point processes with a common intensity. Intensities with such bounds are characterised by the existence of Shearer's point process, the unique R-dependent and R-hard-core point process with a given intensity. We also present several extensions of the Lovász local lemma, a sufficient condition on the intensity and R to guarantee the existence of Shearer's point process and exponential lower bounds. Shearer's point process shares a combinatorial structure with the hard-sphere model with radius R, the unique R-hard-core Markov point process. Bounds from the Lovász local lemma convert into lower bounds on the radius of convergence of a high-temperature cluster expansion of the hard-sphere model. This recovers a classic result of Ruelle (1969) on the uniqueness of the Gibbs measure of the hard-sphere model via an inductive approach of Dobrushin (1996).
We propose a general framework of computing interfacial structures between two modulated phases. Specifically we propose to use a computational box consisting of two half spaces, each occupied by a modulated phase with given position and orientation. The boundary conditions and basis functions are chosen to be commensurate with the bulk phases. We observe that the ordered nature of modulated structures stabilizes the interface, which enables us to obtain optimal interfacial structures by searching local minima of the free energy landscape. The framework is applied to the Landau-Brazovskii model to investigate interfaces between modulated phases with different relative positions and orientations. Several types of novel complex interfacial structures emerge from the calculations.
The statistical error associated with sampling in the DSMC method can be categorized as type I and II, which are caused by the incorrect rejection and acceptance of the null hypothesis, respectively. In this study, robust global and local automatic steady state detection methods were developed based on an ingenious method based purely on the statistics and kinetics of particles. The key concept is built upon probabilistic automatic reset sampling (PARS) to minimize the type II error caused by incorrect acceptance of the samples that do not belong to the steady state. The global steady state method is based on a relative standard variation of collisional invariants, while the local steady state method is based on local variations in the distribution function of particles at each cell. In order to verify the capability of the new methods, two benchmark cases — the one-dimensional shear-driven Couette flow and the two-dimensional high speed flow past a vertical wall—were extensively investigated. Owing to the combined effects of the automatic detection and local reset sampling, the local steady state detection method yielded a substantial gain of 30-36% in computational cost for the problem studied. Moreover, the local reset feature outperformed the automatic detection feature in overall computational savings.
Sofic entropy is an invariant for probability-preserving actions of sofic groups. It was introduced a few years ago by Lewis Bowen, and shown to extend the classical Kolmogorov–Sinai entropy from the setting of amenable groups. Some parts of Kolmogorov–Sinai entropy theory generalize to sofic entropy, but in other respects this new invariant behaves less regularly. This paper explores conditions under which sofic entropy is additive for Cartesian products of systems. It is always subadditive, but the reverse inequality can fail. We define a new entropy notion in terms of probability distributions on the spaces of good models of an action. Using this, we prove a general lower bound for the sofic entropy of a Cartesian product in terms of separate quantities for the two factor systems involved. We also prove that this lower bound is optimal in a certain sense, and use it to derive some sufficient conditions for the strict additivity of sofic entropy itself. Various other properties of this new entropy notion are also developed.
We consider the Widom–Rowlinson model of two types of interacting particles on d-regular graphs. We prove a tight upper bound on the occupancy fraction, the expected fraction of vertices occupied by a particle under a random configuration from the model. The upper bound is achieved uniquely by unions of complete graphs on d + 1 vertices, Kd+1. As a corollary we find that Kd+1 also maximizes the normalized partition function of the Widom–Rowlinson model over the class of d-regular graphs. A special case of this shows that the normalized number of homomorphisms from any d-regular graph G to the graph HWR, a path on three vertices with a loop on each vertex, is maximized by Kd+1. This proves a conjecture of Galvin.
We show that certain topologically defined uniform spanning tree probabilities for graphs embedded in an annulus can be computed as linear combinations of Pfaffians of matrices involving the line-bundle Green's function, where the coefficients count cover-inclusive Dyck tilings of skew Young diagrams.
We give an alternative proof of the theorem of Alikakos and Fusco concerning existence of heteroclinic solutions U : ℝ → ℝN to the system
Here a± are local minima of a potential W ∈ C2(ℝN) with W(a±) = 0. This system arises in the theory of phase transitions. Our method is variational but differs from the original artificial constraint method of Alikakos and Fusco and establishes existence by analysing the loss of compactness in minimizing sequences of the action in the appropriate functional space. Our assumptions are slightly different from those considered previously and also imply a priori estimates for the solution.
We propose a class of random scale-free spatial networks with nested community structures called SHEM and analyze Reed–Frost epidemics with community related independent transmissions. We show that in a specific example of the SHEM the epidemic threshold may be trivial or not as a function of the relation among community sizes, distribution of the number of communities, and transmission rates.
We provide exact computations for the drift of random walks in dependent random environments, including k-dependent and moving average environments. We show how the drift can be characterized and evaluated using Perron–Frobenius theory. Comparing random walks in various dependent environments, we demonstrate that their drifts can exhibit interesting behavior that depends significantly on the dependency structure of the random environment.
Recent inapproximability results of Sly (2010), together with an approximation algorithm presented by Weitz (2006), establish a beautiful picture of the computational complexity of approximating the partition function of the hard-core model. Let λc($\mathbb{T}_{\Delta}$) denote the critical activity for the hard-model on the infinite Δ-regular tree. Weitz presented an FPTAS for the partition function when λ < λc($\mathbb{T}_{\Delta}$) for graphs with constant maximum degree Δ. In contrast, Sly showed that for all Δ ⩾ 3, there exists εΔ > 0 such that (unless RP = NP) there is no FPRAS for approximating the partition function on graphs of maximum degree Δ for activities λ satisfying λc($\mathbb{T}_{\Delta}$) < λ < λc($\mathbb{T}_{\Delta}$) + εΔ.
We prove that a similar phenomenon holds for the antiferromagnetic Ising model. Sinclair, Srivastava and Thurley (2014) extended Weitz's approach to the antiferromagnetic Ising model, yielding an FPTAS for the partition function for all graphs of constant maximum degree Δ when the parameters of the model lie in the uniqueness region of the infinite Δ-regular tree. We prove the complementary result for the antiferromagnetic Ising model without external field, namely, that unless RP = NP, for all Δ ⩾ 3, there is no FPRAS for approximating the partition function on graphs of maximum degree Δ when the inverse temperature lies in the non-uniqueness region of the infinite tree $\mathbb{T}_{\Delta}$. Our proof works by relating certain second moment calculations for random Δ-regular bipartite graphs to the tree recursions used to establish the critical points on the infinite tree.
This work deals with the numerical resolution of the M1-Maxwell system in the quasi-neutral regime. In this regime the stiffness of the stability constraints of classical schemes causes huge calculation times. That is why we introduce a new stable numerical scheme consistent with the transitional and limit models. Such schemes are called Asymptotic-Preserving (AP) schemes in literature. This new scheme is able to handle the quasi-neutrality limit regime without any restrictions on time and space steps. This approach can be easily applied to angular moment models by using a moments extraction. Finally, two physically relevant numerical test cases are presented for the Asymptotic-Preserving scheme in different regimes. The first one corresponds to a regime where electromagnetic effects are predominant. The second one on the contrary shows the efficiency of the Asymptotic-Preserving scheme in the quasi-neutral regime. In the latter case the illustrative simulations are compared with kinetic and hydrodynamic numerical results.
The effect of disorder for pinning models is a subject which has attracted much attention in theoretical physics and rigorous mathematical physics. A peculiar point of interest is the question of coincidence of the quenched and annealed critical point for a small amount of disorder. The question has been mathematically settled in most cases in the last few years, giving in particular a rigorous validation of the Harris criterion on disorder relevance. However, the marginal case, where the return probability exponent is equal to $1/2$, that is, where the interarrival law of the renewal process is given by $\text{K}(n)=n^{-3/2}\unicode[STIX]{x1D719}(n)$ where $\unicode[STIX]{x1D719}$ is a slowly varying function, has been left partially open. In this paper, we give a complete answer to the question by proving a simple necessary and sufficient criterion on the return probability for disorder relevance, which confirms earlier predictions from the literature. Moreover, we also provide sharp asymptotics on the critical point shift: in the case of the pinning of a one-dimensional simple random walk, the shift of the critical point satisfies the following high temperature asymptotics
Recently, organic nanostructures have attracted much attention, and amongst them peptide nanotubes are of interest in many fields of application including medicine and nanobiotechnology. Peptide nanotubes are formed by self-assembly of cyclic peptides with alternating L- and D-amino acids. Due to their biodegradability, flexible design and easy synthesis, many applications have been proposed such as artificial transmembrane ion channels, templates for nanoparticles, mimicking pore structures, nanoscale testing tubes, biosensors and carriers for targeted drug delivery. The mechanisms of an ion, a water molecule and an ion–water cluster entering into a peptide nanotube of structure cyclo[(-D-Ala-L-Ala-)$_{4}$] are explored here. In particular, the Lennard-Jones potential and a continuum approach are employed to determine three entering mechanisms: (i) through the tube open end, (ii) through a region between each cyclic peptide ring and (iii) around the edge of the tube open end. The results show that while entering the nanotube by method (i) is possible, an ion or a molecule requires initial energy to overcome an energetic barrier to be able to enter the nanotube through positions (ii) and (iii). Due to its simple structure, the D-, L-Ala cyclopeptide nanotube is chosen in this model; however, it can be easily extended to include more complicated nanotubes.
The accuracy of moment equations as approximations of kinetic gas theory is studied for four different boundary value problems. The kinetic setting is given by the BGK equation linearized around a globally constant Maxwellian using one space dimension and a three-dimensional velocity space. The boundary value problems include Couette and Poiseuille flow as well as heat conduction between walls and heat conduction based on a locally varying heating source. The polynomial expansion of the distribution function allows for different moment theories of which two popular families are investigated in detail. Furthermore, optimal approximations for a given number of variables are studied empirically. The paper focuses on approximations with relatively low number of variables which allows to draw conclusions in particular about specific moment theories like the regularized 13-moment equations.
The problem of reflection and refraction of elastic waves due to an incident quasi-primary $(qP)$ wave at a plane interface between two dissimilar nematic elastomer half-spaces has been investigated. The expressions for the phase velocities corresponding to primary and secondary waves are given. It is observed that these phase velocities depend on the angle of propagation of the elastic waves. The reflection and refraction coefficients corresponding to the reflected and refracted waves, respectively, are derived by using appropriate boundary conditions. The energy transmission of the reflected and refracted waves is obtained, and the energy ratios and the reflection and refraction coefficients are computed numerically.
We consider Euclidean first passage percolation on a large family of connected random geometric graphs in the d-dimensional Euclidean space encompassing various well-known models from stochastic geometry. In particular, we establish a strong linear growth property for shortest-path lengths on random geometric graphs which are generated by point processes. We consider the event that the growth of shortest-path lengths between two (end) points of the path does not admit a linear upper bound. Our linear growth property implies that the probability of this event tends to zero sub-exponentially fast if the direct (Euclidean) distance between the endpoints tends to infinity. Besides, for a wide class of stationary and isotropic random geometric graphs, our linear growth property implies a shape theorem for the Euclidean first passage model defined by such random geometric graphs. Finally, this shape theorem can be used to investigate a problem which is considered in structural analysis of fixed-access telecommunication networks, where we determine the limiting distribution of the length of the longest branch in the shortest-path tree extracted from a typical segment system if the intensity of network stations converges to 0.
We study systems of $n$ points in the Euclidean space of dimension $d\geqslant 1$ interacting via a Riesz kernel $|x|^{-s}$ and confined by an external potential, in the regime where $d-2\leqslant s<d$. We also treat the case of logarithmic interactions in dimensions 1 and 2. Our study includes and retrieves all cases previously studied in Sandier and Serfaty [2D Coulomb gases and the renormalized energy, Ann. Probab. (to appear); 1D log gases and the renormalized energy: crystallization at vanishing temperature (2013)] and Rougerie and Serfaty [Higher dimensional Coulomb gases and renormalized energy functionals, Comm. Pure Appl. Math. (to appear)]. Our approach is based on the Caffarelli–Silvestre extension formula, which allows one to view the Riesz kernel as the kernel of an (inhomogeneous) local operator in the extended space $\mathbb{R}^{d+1}$.
As $n\rightarrow \infty$, we exhibit a next to leading order term in $n^{1+s/d}$ in the asymptotic expansion of the total energy of the system, where the constant term in factor of $n^{1+s/d}$ depends on the microscopic arrangement of the points and is expressed in terms of a ‘renormalized energy’. This new object is expected to penalize the disorder of an infinite set of points in whole space, and to be minimized by Bravais lattice (or crystalline) configurations. We give applications to the statistical mechanics in the case where temperature is added to the system, and identify an expected ‘crystallization regime’. We also obtain a result of separation of the points for minimizers of the energy.