To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In two-fluid simulations of gas–solid fluidised beds, the gaseous phase and the particulate phase are modelled as continuous media. The stress exerted by the particulate medium on the container walls should be modelled to predict accurately the bed dynamics. This paper addresses the modelling of sliding particle–wall contacts in two-fluid simulations, based on reference simulations coupling computational fluid dynamics with the discrete element method (CFD-DEM), in which the individual movement of the particles is tracked. The analysis of the CFD-DEM highlights the complex near-wall behaviour of the particles, which is not reproduced by two-fluid models. Nevertheless, the particle–wall shear stress can be expressed based on the total granular pressure within the first cell off the wall. The model is validated for the two-fluid simulation of a bubbling gas–solid fluidised bed of olefin particles in the dense-fluidisation regime.
Carlsen [‘$\ast $-isomorphism of Leavitt path algebras over $\Bbb Z$’, Adv. Math.324 (2018), 326–335] showed that any $\ast $-homomorphism between Leavitt path algebras over $\mathbb Z$ is automatically diagonal preserving and hence induces an isomorphism of boundary path groupoids. His result works over conjugation-closed subrings of $\mathbb C$ enjoying certain properties. In this paper, we characterise the rings considered by Carlsen as precisely those rings for which every $\ast $-homomorphism of algebras of Hausdorff ample groupoids is automatically diagonal preserving. Moreover, the more general groupoid result has a simpler proof.
We present the results from a series of experiments investigating the dynamics of gravity currents which form when a dense saline or particle-laden plume issuing from a moving source interacts with a horizontal surface. We define the dimensionless parameter $P$ as the ratio of the source speed, $u_a$, to the buoyancy speed, $(B_0/z_0)^{1/3}$, where $B_0$ and $z_0$ are the source buoyancy flux and height above the horizontal surface, respectively. Using our experimental data, we determine that the limiting case in which $P=P_c$ the gravity current only spreads downstream of the initial impact point occurs when $P_c=0.83\pm 0.02$. For $P< P_c$, from our experiments we observe that the plume forms a gravity current that spreads out in all directions from the point of impact and the propagation of the gravity current is analogous to a classical constant-flux gravity current. For $P>P_c$, we observe that the descending plume is bent over and develops a pair of counter-rotating line vortices along the axis of the plume. The ensuing gravity current spreads out downstream of the source, normal to the motion of the source. Analogous processes occur with particle-laden plumes, but there is a second dimensionless parameter $S$, the ratio of the particle fall speed, $v_s$, to the vertical speed of a plume in a crossflow, $(B_0/u_a z_0)^{1/2}$. For $S\ll 1$, particles remain well mixed in the plume and a particle-driven gravity current develops. For $S\gg 1$, particles separate from the plume prior to impacting the boundary which leads to a fall deposit and no gravity current. We discuss these results in the context of deep-sea mining.
on three important function spaces (i.e., derivative Hardy spaces, weighted Dirichlet spaces, and Bloch type spaces), which is a continuation of the previous works of Mirotin et al. Here, $\mu $ is a positive Radon measure, K is a $\mu $-measurable function on the open unit disk $\mathbb {D}$, and $\sigma _w(z)$ is the classical Möbius transform of $\mathbb {D}$.
This paper examines how unionization affects economic growth through its impact on industry concentration in a two-country model of international trade and endogenous productivity growth. Knowledge spillovers link firm-level productivity in innovation with geographic patterns of industry ensuring a faster rate of output growth when industry is relatively concentrated in the country with the greater labor supply. We show that stronger bargaining power in the relatively large country increases the rate of output growth when labor unions are employment-oriented but decreases the rate of growth when unions are wage-oriented. We then calibrate the model using labor market data for the United Kingdom and France and study the effects of union bargaining power on industry location patterns, output growth, and national welfare.
Although federal judges are the ultimate arbiters of insider trading enforcement, the role of their political ideology in insider trading is unclear. Using the partisanship of judges’ nominating presidents to measure judge ideology, we first document that liberal judges are associated with heavier penalties in insider trading lawsuits than conservative judges. Next, we find that firms located in circuits with more liberal judges have fewer opportunistic insider sales. Cross-sectional analyses show that this deterrent effect is stronger when managers face a higher risk of insider trading lawsuits. Finally, we find that the Securities and Exchange Commission considers judges’ ideology when selecting litigation forums.
This paper initiates the reverse mathematics of social choice theory, studying Arrow’s impossibility theorem and related results including Fishburn’s possibility theorem and the Kirman–Sondermann theorem within the framework of reverse mathematics. We formalise fundamental notions of social choice theory in second-order arithmetic, yielding a definition of countable society which is tractable in ${\mathsf {RCA}}_0$. We then show that the Kirman–Sondermann analysis of social welfare functions can be carried out in ${\mathsf {RCA}}_0$. This approach yields a proof of Arrow’s theorem in ${\mathsf {RCA}}_0$, and thus in $\mathrm {PRA}$, since Arrow’s theorem can be formalised as a $\Pi ^0_1$ sentence. Finally we show that Fishburn’s possibility theorem for countable societies is equivalent to ${\mathsf {ACA}}_0$ over ${\mathsf {RCA}}_0$.
The majority of studies on ‘faith’ (fides) in the thought of Thomas Aquinas consider it in a religious or theological context: fides as the theological virtue by which one assents to the truths of divine revelation. The focus on theological faith is appropriate, given its central importance as a theological virtue, but this is not the only sense of fides that Thomas identifies. The present study investigates two non-theological senses formulated in his commentary on the De Trinitate of Boethius: first, fides as the proximate cause of assenting to principles within a given science (‘epistemic faith’) and, second, fides as an indispensable element of society (‘societal faith’). These senses have been largely overlooked in secondary literature but, I argue, might help to dispel mischaracterizations of faith as fundamentally unreasonable.
Flow within submerged canopies influences the transport of nutrients, sediment, pollutants, plant seeds and the settlement of larvae. To improve our understanding of mass transport within canopies, a simple model is proposed to predict the total time-varying velocity within submerged rigid canopies (representing coral reefs) and flexible canopies (representing seagrasses and saltmarshes). The model divides the momentum equations into a canopy layer and free-stream layer. The difference in the time derivative of the velocity between the two layers is balanced by the sum of the shear stress and canopy drag, both of which depend on the in-canopy total velocity. The present model extended the shear stress model developed for steady current to combined current and wave conditions without additional calibrating coefficients. The model agreed well with the in-canopy velocity measured in the present and several previous studies. Importantly, the proposed model significantly improved the accuracy of canopy time-mean velocity prediction, which reduced the root mean square error by more than 50 %, compared with previous models. The model revealed that the addition of waves can significantly decrease the in-canopy time-mean velocity.
Tertiary weathered sediments located immediately to the west of the harbor at Newhaven, Sussex, UK, were investigated by examination of major and trace elements by scanning electron microscope (SEM), microprobe, and inductively coupled plasma mass spectrometer (ICP-MS), and the mineralogy was studied by optical petrography, X-ray diffraction (XRD), transmission electron microscope (TEM), selective leaching, and thermodynamic modeling. Studied outcrops experienced acid leaching by sulfuric acid percolating downward through Tertiary sediments overlying Cretaceous chalk. The progressive neutralization of the percolating acid fluids resulted in “sequentially” layered neoformation of minerals: jarosite, iron oxides, aluminous minerals (sulfates, oxyhydroxides), gypsum, and Fe-Mn oxides. Substantial agreement was found between field observations and mineral assemblages obtained by modeling with the program CHILLER. These results suggest that the initial assumptions on the weathering process and mechanisms are correct. The relevance and implications of this study in the modeling of future denudation and weathering processes of radioactive waste-disposal sites (both deeply buried sites for high-leveI waste and surface sites for low-level waste) are discussed. Neoformed phases, such as jarosite, aluminous minerals, and silico-aluminous gels may play a significant role in the efficient trapping of mobilized pollutant radionuclides.
Selected Brazilian Oxisols were sampled and submitted to high-gradient magnetic separation (HGMS) to study the iron oxide-clay mineral associations. The soils, derived from four different parent materials, have mineralogy dominated mostly by hematite, goethite, and kaolinite. Gibbsite appears in most soil samples. The high-gradient magnetic separation showed good separation for some soils, as indicated by color differentiation and iron oxide segregation between magnetic and nonmagnetic fractions. Soils that showed a somewhat low surface area for the iron oxides associated with high phosphate adsorption were poorly separated by HGMS. This suggests a strong interaction between kaolinite and iron oxides, which would indicate a low estimation of their surface areas obtained by the difference method using BET-N2 data. A relative concentration of anatase and rutile in the magnetic portion of some of the samples was attributed to the presence of Fe, either as coatings on the crystals or within the structure of these two minerals.
The importance of precipitation rate as an effective control on illite and kaolanite formation during diagenesis has been examined by measuring precipitation rates, from Al fluid concentration, in a Dickson fluid-sampling vessel at 160°-250° and 500 bars (50 MPa). These experiments are considered to be analogues of the precipitation of clays in sandstones from porewaters containing dissolved carboxylic acids, which have a transient stability and may influence aluminosilicate solubility. Precipitated illite had a lath-shaped morphology and its composition was consistent with authigenic illite in sandstones. Kaolinite formed tabular rather than vermicular shaped crystals. Kaolinite precipitation rate was two orders of magnitude faster than illite precipitation and was rate-limited by the decomposition of oxalate; kaolinite formation should be equilibrium-controlled at virtually all stages of burial. Extrapolation of illite precipitation rate to burial temperatures indicates that the first appearance of illite in a burial sequence may be kinetically controlled. A model of illite precipitation based on these experimental results has been used to predict the time required to precipitate illite during burial of a sandstone, taking into account temperature changes during burial. For northern North Sea examples, a predicted illitization threshold of -60°C occurring at 60–80 Ma corresponds to the observed initiation of authigenic illite precipitation. Times of around 2–5 Ma would be required to reach a 98% approach to equilibrium at this threshold. The main phase of illite precipitation in the northern North Sea basin is a later, hydrologically controlled event (30-50 Ma). Equilibrium would be approached in around 0.1 Ma during this phase, which is consistent with the narrow illite K/Ar age range (1-5 Ma) recorded for some sequences.
The fine silt (2–5 μm) coarse clay (0.1–2 μm) and fine clay (<0.1 μm) fractions of a Vertisol from South Italy were studied with X-ray diffraction. The most reactive fine clay (<0.1 μm) fraction was investigated in detail using a curve decomposition method analysis of X-ray diffraction diagrams, FTIR spectroscopy and chemical analysis. In the soil parent material, the fine clay fraction was dominated by low-charge smectites (beidellite and montmorillonite) whereas, high-charge beidellite was the dominant clay mineral in the fine clay from the upper soil horizons. This suggested that high-charge beidellite was produced through alteration of the preexisting low-charge smectites and was the stable clay phase in this soil environment, characterized by high pH (>8.0). After K-saturation and 25 wetting and drying cycles, the high-charge beidellite from the soil horizons lost expandability far more than the original low-charge smectites.
In February, the emergence of COronaVIrus Disease 2019 (COVID - 19) in France made it necessary to rapidly adapt emergency and SAMU services in order to take care of many infected patients. To respond to the increase in the number of calls in the dispatch centers, reinforcements were necessary on the fronts of the Medical Regulation Assistants (ARM). The aim of this study was to assess the relevance of medical students’ responses to first calls exclusively concerning COVID-19.
Methods:
This prospective, observational cohort study was carried out at the University Hospital Centre (CHU) in Angers. Twenty medical students mostly in the 5th year were voluntarily enrolled in the first line COVID-19 call taker team. Calls on the 1st, 3rd, and 5th starting day for each medical student, and randomly selected calls from the experienced first-line call taker were listened to by a medical expert to assess the adequate level of prioritization and orientation (emergency physician or general practitioner). The percentage of agreement between the expert, students, and experienced first-line call handlers were assessed. All participants gave their free consent to participate. The study was approved by the Ethics Committee of Angers (N° 2020-48).
Results:
From March 18 to April 23, 2020, 302 calls from medical students (n = 20 students) and 40 calls from experienced first-line call handlers were analyzed. The average prioritization agreement rate between the expert and students was 76.16% (95% Confidence Interval: 71.04 to 80.62%) (n = 230/302) compared to 87.50% (95% CI: 73.9 to 94.5%) (n = 45/50) for the experienced first-line call handlers (P = 0.15). Medical students took more time per call with an absolute difference of 2 minutes 16 seconds (P < 0.001).
Conclusion:
The lessons to be observed from this COVID-19 crisis are that in the early days of increasing calls heralding a strain on the healthcare system, support by medical students must be considered.
The dissolution of two Ca2+-exchanged nontronite samples has been studied in 10% HCl. Early acid-dissolution studies (Osthaus, 1954) have indicated that after two hours of dissolution most of the octahedral Fe3+ (VIFe3+) would be removed leaving mainly tetrahedral Fe3+ (IVFe3+) in the nontronite structure. In the present study, 57Fe Mössbauer spectra of acid-treated samples were recorded and fitted with two octahedral Fe3+ (2 × VIFe3+) and two octahedral and one tetrahedral (2 × VIFe3+, 1 × IVFe3+) doublet models. The Mössbauer spectra of acid-treated Garfield nontronite samples could be adequately fitted with two-doublet models but acid-treated Hohen Hagen nontronite samples could not. Isomer shift and quadrupole splitting values obtained from the two-doublet models corresponded to VIFe3+ and not IVFe3+, as was suggested by the Osthaus (1954) experiment. When an IVFe3+ doublet was included in the model used to fit the Mössbauer spectra of acid-treated Garfield nontronite samples, a slight increase in the intensity of the IVFe3+ doublet occurred with increasing dissolution, but this was much lower than indicated by Osthaus (1954). No trend in the intensity of the IVFe3+ doublet was observed for acid-treated Hohen Hagen nontronite. Therefore, acid treatment appears to remove VIFe3+ and IVFe3+ from the nontronite structure at about the same rate. Mössbauer spectroscopy, infrared spectroscopy and X-ray powder diffraction data indicate that the nontronite that remains undissolved following acid treatment is structurally similar to the untreated nontronite.