We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The evolution of settling fine particle clouds in transition or rarefied flow regimes is a fundamental yet insufficiently understood problem in fluid mechanics. Here, we address this challenge numerically using a kinematic model, and approximate the hydrodynamic interaction between particles by superposing velocity disturbances from rarefied gas flows past individual particles. The effect of electrostatic interactions among charged particles is also studied. As an application, we simulate the sedimentation of small dust clouds under Martian conditions, focusing on the 10$\,\unicode{x03BC}$m diameter fraction of ‘settled dust’. Our results show that under Martian conditions, dust clouds develop elongated tails during sedimentation, with up to 25 % of particles leaking from the bulk over a 10 minute period. Unlike Earth-based scenarios, the clouds do not break apart owing to the weaker hydrodynamic interactions in Mars’ thin atmosphere. By examining the interplay between hydrodynamic and electrostatic interactions, which influence particle leakage in opposite ways, we demonstrate that larger dust clouds are also likely to evolve with sustained tail formation. Fully suppressing particle leakage would require particle charges well above $10^4e$, levels unlikely to occur under typical Martian conditions. New analytical expressions are derived for the cloud settling velocity and tail evolution, providing theoretical insights and a foundation for future studies on particle dynamics in transition/rarefied environments.
Major depressive disorder (MDD) and psychostimulant use disorder (PUD) are common, disabling psychopathologies that pose a major public health burden. They share a common behavioral phenotype: deficits in inhibitory control (IC). However, whether this is underpinned by shared neurobiology remains unclear. In this meta-analytic study, we aimed to define and compare brain functional alterations during IC tasks in MDD and PUD.
Methods
We conducted a systematic literature search on IC task-based functional magnetic resonance imaging studies in MDD and PUD (cocaine or methamphetamine use disorder) in PubMed, Web of Science, and Scopus. We performed a quantitative meta-analysis using seed-based d mapping to define common and distinct neurofunctional abnormalities.
Results
We identified 14 studies comparing IC-related brain activation in a total of 340 MDD patients with 303 healthy controls (HCs), and 11 studies comparing 258 PUD patients with 273 HCs. MDD showed disorder-differentiating hypoactivation during IC tasks in the median cingulate/paracingulate gyri relative to PUD and HC, whereas PUD showed disorder-differentiating hypoactivation relative to MDD and HC in the bilateral inferior parietal lobule. In conjunction analysis, hypoactivation in the right inferior/middle frontal gyrus was common to both MDD and PUD.
Conclusions
The transdiagnostic neurofunctional alterations in prefrontal cognitive control regions may underlie IC deficits shared by MDD and PUD, whereas disorder-differentiating activation abnormalities in midcingulate and parietal regions may account for their distinct features associated with disturbed goal-directed behavior.
The incorporation of trace metals into land snail shells may record the ambient environmental conditions, yet this potential remains largely unexplored. In this study, we analyzed modern snail shells (Cathaica sp.) collected from 16 sites across the Chinese Loess Plateau to investigate their trace metal compositions. Our results show that both the Sr/Ca and Ba/Ca ratios exhibit minimal intra-shell variability and small inter-shell variability at individual sites. A significant positive correlation is observed between the shell Sr/Ca and Ba/Ca ratios across the plateau, with higher values being recorded in the northwestern sites where less monsoonal rainfall is received. We propose that shell Sr/Ca and Ba/Ca ratios, which record the composition of soil solution, may be controlled by the Rayleigh distillation in response to prior calcite precipitation. Higher rainfall amounts may lead to a lower degree of Rayleigh distillation and thus lower shell Sr/Ca and Ba/Ca ratios. This is supported by the distinct negative correlation between summer precipitation and shell Sr/Ca and Ba/Ca ratios, enabling us to reconstruct summer precipitation amounts using the Sr/Ca and Ba/Ca ratios of Cathaica sp. shells. The potential application of these novel proxies may also be promising for other terrestrial mollusks living in the loess deposits globally.
The high comorbidity of major depressive disorder (MDD), anxiety disorders (ANX), and post-traumatic stress disorder (PTSD) complicates the study of their structural neural correlates, particularly in white matter (WM) alterations. Using fractional anisotropy (FA), this meta-analysis aimed to identify both unique and shared WM characteristics for these disorders by comparing them with healthy controls (HC). The aggregated sample size across studies includes 3,661 individuals diagnosed with MDD, ANX, or PTSD and 3,140 HC participants. The whole-brain analysis revealed significant FA reductions in the corpus callosum (CC) across MDD, ANX, and PTSD, suggesting a common neurostructural alteration underlying these disorders. Further pairwise comparisons highlighted disorder-specific differences: MDD patients showed reduced FA in the middle cerebellar peduncles and bilateral superior longitudinal fasciculus II relative to ANX patients and decreased FA in the CC extending to the left anterior thalamic projections (ATPs) when compared with PTSD. In contrast, PTSD patients exhibited reduced FA in the right ATPs compared to HC. No significant FA differences were observed between ANX and PTSD or between ANX and HC. These findings provide evidence for both shared and unique WM alterations in MDD, ANX, and PTSD, reflecting the neural underpinnings of the clinical characteristics that distinguish these disorders.
In response to the prevailing trend of an aging society and the increasing requirements of rehabilitation, this paper presents an approach involving brain-machine interaction (BMI) for a single-degree-of-freedom (1-DOF) sit-to-stand transfer robot. Based on a 1-DOF rehabilitation robot, three experiment paradigms involving motor imagery (MI), action observation of motor imagery (AO-MI) and motor execution are designed using both electroencephalography (EEG) and electromyography (EMG). To enhance motion intention recognition accuracy, a Gumbel-ResNet-KANs decoding model is established. The Gumbel-ResNet-KANs model integrates the Gumbel-Softmax method with the ResNet-KANs network module and demonstrates strong decoding capability, as demonstrated by comparative tests in this paper. To validate the effect of robotic assistance, EEG and EMG coherence are analyzed to assess the impact of robotic assistance on rehabilitation from a neuromuscular perspective in both assisted and unassisted conditions. We assessed the effect of robotics on rehabilitation from an emotional perspective by analyzing the difference between the differential entropy of the right and left brain. The proposed study also reveals that the movement-related cortical potentials in AO-MI are beneficial for promoting the performance of BMI in sit-to-stand training, which provides a possible approach for the development of new types of robots for lower limb rehabilitation.
This paper introduces a novel ray-tracing methodology for various gradient-index materials, particularly plasmas. The proposed approach utilizes adaptive-step Runge–Kutta integration to compute ray trajectories while incorporating an innovative rasterization step for ray energy deposition. By removing the requirement for rays to terminate at cell interfaces – a limitation inherent in earlier cell-confined approaches – the numerical formulation of ray motion becomes independent of specific domain geometries. This facilitates a unified and concise tracing method compatible with all commonly used curvilinear coordinate systems in laser–plasma simulations, which were previously unsupported or prohibitively complex under cell-confined frameworks. Numerical experiments demonstrate the algorithm’s stability and versatility in capturing diverse ray physics across reduced-dimensional planar, cylindrical and spherical coordinate systems. We anticipate that the rasterization-based approach will pave the way for the development of a generalized ray-tracing toolkit applicable to a broad range of fluid simulations and synthetic optical diagnostics.
We investigated vitamin D (VitD) nutritional status in children aged 2–6 years to provide a basis for prevention and intervention strategies for VitD deficiency (VitDD) in Chinese children.
Design:
From November 2018 to September 2019, a total of 2192 healthy children aged 2–6 years were enrolled. The serum 25-hydroxyvitamin D (25(OH)D) concentrations were measured by liquid chromatography tandem MS.
Setting:
Twelve jurisdictions in eight provinces and cities across northern and southern China were selected through stratified cluster sampling.
Participants:
2192 children aged 2–6 years were enrolled.
Results:
(1) A serum 25(OH)D concentration of 23·87 (sd 8·24) ng/ml, a VitDS rate of 65·2 %, an insufficiency rate of 29·6 % and a deficiency rate of 5·2 % were noted. (2) Age (OR = 2·22, 95 % CI 1·86, 2·64) and spring (OR = 1·35, 95 % CI 0·91, 2·01) are risk factors for VitDD and VitDI. The male (OR = 0·68, 95 % CI 0·52, 0·90), the temperature (OR = 0·89, 95 % CI 0·86, 0·93), summer (OR = 0·25, 95 % CI 0·09, 0·68), autumn (OR = 0·26, 95 % CI 0·09, 0·74) the intake of VitD supplements (OR = 0·08, 95 % CI 0·03, 0·28), the intake frequency of dairy products (OR = 0·86, 95 % CI 0·78, 0·96) and egg products (OR = 0·83, 95 % CI 0·74, 0·93) are protective factors for VitDD and VitDI.
Conclusion:
VitDD in children aged 2–6 years is still prevalent in China, but the influencing factors of VitD nutrition have changed. Latitude is not the main factor in the 25(OH)D concentrations of children aged 2–6 years; temperature, intake of eggs and dairy products and sampling season have more obvious impacts.
River terraces serve as excellent indicators of the landform evolution of the Guizhou Plateau. This paper presents the results of terrace investigation and optically stimulated luminescence (OSL) dating focused on five sections along the Liujiang River of the southeastern Guizhou Plateau. The OSL ages of the terraces range from 0.21 ± 0.02 to 16.0 ± 1.4 ka for the first terraces (T1) and from 3.5 ± 0.3 to 26.5 ± 3.3 ka for the second terraces (T2), which are much younger than those of other basins on the Guizhou Plateau. These ages, considered in tandem with the results of previous investigations, enhance our understanding of the fluvial landform evolution of the Guizhou Plateau since the Late Pleistocene. On the Guizhou Plateau platform, terraces are considered to be the response of river evolution to tectonic uplift, indicating a relatively slow geomorphic process. In the slope zone, climate change has had a significant impact on the fluvial landform processes, driving the formation of the younger terraces along the Liujiang River. In the platform–slope transition zone, the evolution of terraces was driven by both tectonic uplift and climate change, where the landform processes were dominated by strong headward erosion.
Numerous studies have explored the relationship between brain aging and major depressive disorder (MDD) and attempted to explain the phenomenon of faster brain aging in patients with MDD from multiple perspectives. However, a major challenge in this field is elucidating the ontological basis of these changes. Here, we aimed to explore the relationship between brain structural changes in MDD-related brain aging and neurotransmitter expression levels and transcriptomics.
Methods
Imaging data from 670 Japanese participants (MDD: health controls = 233:437) and the support vector regression model were utilized to predict and compare brain age between MDD patients and healthy controls. A map of differences in cortical thickness was generated, furthermore, spatial correlation analysis with neurotransmitters and correlation analysis with gene expression were performed.
Results
The degree of brain aging was found to be significantly higher in patients with MDD. Moreover, significant cortical thinning was observed in the left ventral area, and premotor eye field in patients with MDD. A significant correlation was observed between MDD-related cortical thinning and neurotransmitter receptors/transporters, including dopaminergic, serotonergic, and glutamatergic systems. Enriched Gene Ontology terms, including protein binding, plasma membrane, and protein processing, contribute to MDD-related cortical thinning.
Conclusions
The findings of this study provide further evidence that patients with MDD experience more severe brain aging, deepening our understanding of the underlying neural mechanisms and genetic basis of the brain changes involved. Additionally, these findings hold promise for the development of interventions aimed at preventing further deterioration in MDD-related brain aging, thus offering potential therapeutic avenues.
The betatron radiation source features a micrometer-scale source size, a femtosecond-scale pulse duration, milliradian-level divergence angles and a broad spectrum exceeding tens of keV. It is conducive to the high-contrast imaging of minute structures and for investigating interdisciplinary ultrafast processes. In this study, we present a betatron X-ray source derived from a high-charge, high-energy electron beam through a laser wakefield accelerator driven by the 1 PW/0.1 Hz laser system at the Shanghai Superintense Ultrafast Laser Facility (SULF). The critical energy of the betatron X-ray source is 22 ± 5 keV. The maximum X-ray flux reaches up to 4 × 109 photons for each shot in the spectral range of 5–30 keV. Correspondingly, the experiment demonstrates a peak brightness of 1.0 × 1023 photons·s−1·mm−2·mrad−2·0.1%BW−1, comparable to those demonstrated by third-generation synchrotron light sources. In addition, the imaging capability of the betatron X-ray source is validated. This study lays the foundation for future imaging applications.
A compact microstrip eight-channel diplexer based on quad-mode stepped impedance resonator (QMSIR) is proposed in this paper. The proposed diplexer is composed by two second-order quad-band bandpass filters (BPFs) and common-port distributed coupling matching circuit. Each quad-band BPF is formed by two coupled-QMSIRs controlling the passband characteristics. By introducing multiple coupling paths between input and output ports, the isolation between the eight channels is performed. For demonstration, an eight-channel diplexer based on QMSIR is designed and fabricated with microstrip technology. The use of the QMSIR can lead to significant size reduction for the multiplexer, this is because the required resonator number is reduced. As a result, the diplexer occupies a compact size of 0.083λ2, which is smaller than most of the eight-channel diplexers that have been proposed. And the 3 dB fractional bandwidth is 97% (2.5–7.2 GHz). Measurement results correlate well with the simulated predictions, showing that a good isolation of better than 20 dB and upper stopband of better than 10 dB.
Prehistoric humans seem to have preferred inhabiting small river basins, which were closer in distance to most settlements compared to larger rivers. The Holocene landscape evolution is considered to have played a pivotal role in shaping the spatiotemporal patterns of these settlements. In this study, we conducted comprehensive research on the relationship between landscape evolution and settlement distribution within the Huangshui River basin, which is a representative small river in Central China with numerous early settlements, including a prehistoric city known as the Wangjinglou site (WJL). Using geoarchaeological investigations, optically stimulated luminescence dating, pollen analysis, and grain-size analysis, we analyzed the characteristics of the Holocene environment. The results indicate the presence of two distinct geomorphic systems, namely the red clay hills and the river valley. The red clay hills, formed in the Neogene, represent remnants of the Songshan piedmont alluvial fan that was eroded by rivers. There are three grades of terraces within the river valley. T3 is a strath terrace and formed around 8.0 ka. Both T2 and T1 are fill terraces, which were developed around 4.0 ka and during the historical period, respectively. The sedimentary features and pollen analysis indicate the existence of an ancient lake-swamp on the platform during 11.0–9.0 ka. This waterbody gradually shrank during 9.0–8.0 ka, and ultimately disappeared after 8.0 ka. Since then, the development of large-scale areas of water ceased on the higher geomorphic units. River floods also cannot reach the top of these high geomorphic units, where numerous prehistoric settlements are located, including the Xia–Shang cities of the WJL site. Our research demonstrates that landscape stability supported the long-term and sustainable development of ancient cultures and facilitated the establishment of the WJL ancient cities in the region.
Following the 2020 cardiopulmonary resuscitation (CPR) guidelines, this study compared participant’s fatigue with the quality of manual chest compressions performed in the head-up CPR (HUP-CPR) and supine CPR (SUP-CPR) positions for two minutes on a manikin.
Methods:
Both HUP-CPR and SUP-CPR were performed in a randomized order determined by a lottery-style draw. Manual chest compressions were then performed continuously on a realistic manikin for two minutes in each position, with a 30-minute break between each condition. Data were collected on heart rate, blood pressure, and Borg rating of perceived exertion (RPE) scale scores from the participants before and after the compressions.
Results:
Mean chest compression depth (MCCD), mean chest compression rate (MCCR), accurate chest compression depth ratio (ACCDR), and correct hand position ratio were significantly lower in the HUP group than that in the SUP group. However, there were no significant differences in accurate chest compression rate ratio (ACCRR), correct recoil ratio, or mean arterial pressure (MAP) before and after chest compressions between the two groups. Changes in heart rate and RPE scores were greater in the HUP group.
Conclusion:
High-quality manual chest compressions can still be performed when the CPR manikin is placed in the HUP position. However, the quality of chest compressions in the HUP position was poorer than those in the SUP position, and rescuer fatigue was increased.
Psychiatric diagnosis is based on categorical diagnostic classification, yet similarities in genetics and clinical features across disorders suggest that these classifications share commonalities in neurobiology, particularly regarding neurotransmitters. Glutamate (Glu) and gamma-aminobutyric acid (GABA), the brain's primary excitatory and inhibitory neurotransmitters, play critical roles in brain function and physiological processes.
Methods
We examined the levels of Glu, combined glutamate and glutamine (Glx), and GABA across psychiatric disorders by pooling data from 121 1H-MRS studies and further divided the sample based on Axis I disorders.
Results
Statistically significant differences in GABA levels were found in the combined psychiatric group compared with healthy controls (Hedge's g = −0.112, p = 0.008). Further analyses based on brain regions showed that brain GABA levels significantly differed across Axis I disorders and controls in the parieto-occipital cortex (Hedge's g = 0.277, p = 0.019). Furthermore, GABA levels were reduced in affective disorders in the occipital cortex (Hedge's g = −0.468, p = 0.043). Reductions in Glx levels were found in neurodevelopmental disorders (Hedge's g = −0.287, p = 0.022). Analysis focusing on brain regions suggested that Glx levels decreased in the frontal cortex (Hedge's g = −0.226, p = 0.025), and the reduction of Glu levels in patients with affective disorders in the frontal cortex is marginally significant (Hedge's g = −0.172, p = 0.052). When analyzing the anterior cingulate cortex and prefrontal cortex separately, reductions were only found in GABA levels in the former (Hedge's g = − 0.191, p = 0.009) across all disorders.
Conclusions
Altered glutamatergic and GABAergic metabolites were found across psychiatric disorders, indicating shared dysfunction. We found reduced GABA levels across psychiatric disorders and lower Glu levels in affective disorders. These results highlight the significance of GABA and Glu in psychiatric etiology and partially support rethinking current diagnostic categories.
This study investigates the molecular intricacies of the transmembrane protein TSP11 gene in Echinococcus strains isolated from livestock and patients in Yunnan Province afflicted with Echinococcus granulosus (E. granulosus) between 2016 and 2020. Gene typing analysis of the ND1 gene revealed the presence of the G1 type, G5 type and untyped strains, constituting 52.4, 38.1 and 9.5%, respectively. The analysis of 42 DNA sequences has revealed 24 novel single nucleotide polymorphic sites, delineating 11 haplotypes, all of which were of the mutant type. Importantly, there were no variations observed in mutation sites or haplotypes in any of the hosts. The total length of the TSP11 gene's 4 exons is 762 bp, encoding 254 amino acids. Our analysis posits the existence of 6 potential B-cell antigenic epitopes within TSP11, specifically at positions 49-KSN-51, 139-GKRG-142, 162-DNG-164, 169-NGS-171, 185-DS-186 and 231-PPRFTN-236. Notably, these epitopes exhibit consistent presence among various intermediate hosts and haplotypes. However, further validation is imperative to ascertain their viability as diagnostic antigens for E. granulosus in the Yunnan Province.
The Indo-Pacific Warm Pool (IPWP) significantly influences the global hydrological cycle through its impact on atmospheric-oceanic circulation. However, gaining a comprehensive understanding of the hydrologic climate dynamics within the IPWP and its broader effects on the global climate have been hindered by spatial and temporal limitations in paleoclimate records on orbital timescales. In this study, we reconstructed precipitation records (approximated from δ18Osw-ivc) over the past 450 kyr, based on planktonic foraminiferal Mg/Ca and δ18O data obtained from International Ocean Discovery Program Site U1486 in the western tropical Pacific. The δ18Osw-ivc record revealed a generally consistent pattern with precession variations over the past 450 kyr, closely corresponding to changes in boreal summer insolation at the equator. The δ18Osw-ivc record displayed an anti-phased relationship with Chinese speleothem δ18O records on the precession band, with lower precipitation in the western tropical Pacific and higher precipitation in the East Asia summer monsoon region during periods of high Northern Hemisphere summer insolation. This anti-phased correlation primarily resulted from the north-south migration of the Intertropical Convergence Zone (ITCZ), influenced by the interhemispheric insolation contrast. By considering additional δ18Osw-ivc records from various locations within the IPWP region, we identified synchronous precipitation changes within the IPWP on the precession band. The synchronization of precipitation on both margins of the ITCZ’s seasonal range and differences between central and marginal regions of the ITCZ within the IPWP revealed the expansion and contraction of the ITCZ on precession band.
The extension of organic fertilizers helps improve soil quality and reduces non-point source pollution caused by excessive use of fertilizers, however, whether the application of organic fertilizers (OFA) contributes to an increase in farmers' income is a matter of debate. This paper discussed how the application of soil-testing formulas and outsourcing services that some or all links of agricultural production to professional organizations moderate the income-increasing effect of OFA, and Multinomial Endogenous Switching Regression Model (MESR) is selected to do the empirical test. The results indicate that OFA with soil-testing formula and OFA with outsourcing service can effectively increase farmers' income, in specific, OFA with soil-testing formula increases the net monetary income of wheat growing on per hectare (ha) of land by 2150 Renminbi (RMB), and OFA with outsourcing service increases the net monetary income of wheat growing on per ha of land by 3950 RMB, however, OFA has no effectiveness on increasing farmers' income if neither soil-testing formulas nor outsourcing services is available. The influence mechanism of OFA to improve farmers' income is to increase crop yield, but OFA has no effectiveness on increasing the price of products. A systematic extension services including the extension of organic fertilizers, soil testing formulas and outsourcing services should be formed in the future.
Pebrine disease, caused by Nosema bombycis (Nb) infection in silkworms, is a severe and long-standing disease that threatens sericulture. As parasitic pathogens, a complex relationship exists between microsporidia and their hosts at the mitochondrial level. Previous studies have found that the translocator protein (TSPO) is involved in various biological functions, such as membrane potential regulation, mitochondrial autophagy, immune responses, calcium ion channel regulation, and cell apoptosis. In the present study, we found that TSPO expression in silkworms (BmTSPO) was upregulated following Nb infection, leading to an increase in cytoplasmic calcium, adenosine triphosphate, and reactive oxygen species levels. Knockdown and overexpression of BmTSPO resulted in the promotion and inhibition of Nb proliferation, respectively. We also demonstrated that the overexpression of BmTSPO promotes host cell apoptosis and significantly increases the expression of genes involved in the immune deficiency and Janus kinase-signal transducer and the activator of the transcription pathways. These findings suggest that BmTSPO activates the innate immune signalling pathway in silkworms to regulate Nb proliferation. Targeting TSPO represents a promising approach for the development of new treatments for microsporidian infections.
Digitaria ciliaris var. chrysoblephara (Fig. & De Not.) R.R. Stewart is an annual xeromorphic weed that severely infests direct-seeded rice fields in China. Herbicide resistance is emerging in D. ciliaris var. chrysoblephara owing to extensive and recurrent use of the acetyl-CoA carboxylase (ACCase)-inhibiting herbicide metamifop. In this study, a total of 53 D. ciliaris var. chrysoblephara populations randomly sampled from direct-seeded rice fields across Jiangsu Province were investigated for metamifop resistance and potential resistance-endowing mutations. Single-dose assays revealed that 17 (32.1%) populations evolved resistance to metamifop and 5 (9.4%) populations were in the process of developing resistance. The resistance index (RI) of metamifop-resistant populations ranged from 2.7 to 32.1. Amino acid substitutions (Ile-1781-Leu, Trp-2027-Cys/Ser, and Ile-2041-Asn) in ACCase genes were detected in resistant D. ciliaris var. chrysoblephara plants and caused various cross-resistance patterns to ACCase-inhibiting herbicides. All of four resistant populations (YC07, YZ09, SQ03, and HA06), with different ACCase mutations, exhibited cross-resistance to the aryloxyphenoxypropionate (APP) herbicides cyhalofop-butyl (RI values: 10.0 to 19.9), fenoxaprop-P-ethyl (RI values: 53.7 to 132.8), and haloxyfop-P-methyl (RI values: 6.2 to 62.6), and the phenylpyrazoline (DEN) pinoxaden (RI values: 2.3 to 5.4), but responded differently to the cyclohexanedione (CHD) herbicides clethodim and sethoxydim. It is noteworthy that four postemergence herbicides used for rice cropping, including bispyribac-sodium, pyraclonil, quinclorac, and anilofos, showed poor control effect against D. ciliaris var. chrysoblephara, suggesting few alternations for managing this weed in rice fields except ACCase inhibitors. In conclusion, this work demonstrated that the D. ciliaris var. chrysoblephara had developed resistance to ACCase-inhibiting herbicides in rice cultivation of China, and target-site amino acid substitutions in ACCase were primarily responsible for metamifop resistance.