This chapter addresses generalizations of the Schrödinger equation. It tries to convey that the Schrödinger equation is not the whole story when it comes to quantum physics. This is illustrated by expanding the framework in two rather orthogonal directions: relativistic quantum physics and open quantum systems. The former is introduced by taking the Klein–Gordon equation as the starting point, before shifting attention to the Dirac equation. Its time-independent version is solved numerically for a one-dimensional example, and its relation to the Schrödinger equation is derived. Also here, the Pauli matrices play crucial roles. The notion of open quantum systems is motivated by the fact that it is hard to keep a quantum system completely isolated from its surroundings – and that this necessitates a different approach than the one provided by wave functions. To this end, reduced density matrices and the notion of master equations are introduced. It is explained why master equations of the form of the generic Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) equation are desirable. Two particular phenomena following this equation are studied quantitatively: amplitude damping for a single quantum bit system and particle capture in a confining potential. Again, these examples draw directly on previous ones.
Review the options below to login to check your access.
Log in with your Cambridge Aspire website account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.