We now begin our study of the classical relativistic string – a string that is, in many ways, much more elegant than the nonrelativistic one considered before. Inspired by the point particle case, we focus our attention on the surface traced out by the string in spacetime. We use the proper area of this surface as the action; this is the Nambu–Goto action. We study the reparameterization property of this action, identify the string tension, and find the equations of motion. For open strings, we focus on the motion of the endpoints and introduce the concept of D-branes. Finally, we see that the only physical motion is transverse to the string.
Area functional for spatial surfaces
The action for a relativistic string must be a functional of the string trajectory. Just as a particle traces out a line in spacetime, a string traces out a surface. The line traced out by the particle in spacetime is called the world-line. The two-dimensional surface traced out by a string in spacetime will be called the world-sheet. A closed string, for example, will trace out a tube, while an open string will trace out a strip. These two-dimensional world-sheets are shown in the spacetime diagram of Figure 6.1. The lines of constant x0 in these surfaces are the strings. These are the objects an observer sees at the fixed time x0. They are open curves for the surface describing the open string evolution (left), and they are closed curves for the surface describing the closed string evolution (right).
Review the options below to login to check your access.
Log in with your Cambridge Aspire website account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.