Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 7: Binary Systems and Stellar Parameters

Chapter 7: Binary Systems and Stellar Parameters

pp. 180-201

Authors

, Weber State University, Utah, , Weber State University, Utah
Resources available Unlock the full potential of this textbook with additional resources. There are free resources and Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

THE CLASSIFICATION OF BINARY STARS

Adetailed understanding of the structure and evolution of stars (the goal of Part II) requires knowledge of their physical characteristics. We have seen that knowledge of blackbody radiation curves, spectra, and parallax enables us to determine a star's effective temperature, luminosity, radius, composition, and other parameters. However, the only direct way to determine the mass of a star is by studying its gravitational interaction with other objects.

In Chapter 2 Kepler's laws were used to calculate the masses of members of our Solar System. However, the universality of the gravitational force allows Kepler's laws to be generalized to include the orbits of stars about one another and even the orbital interactions of galaxies, as long as proper care is taken to refer all orbits to the center of mass of the system.

Fortunately, nature has provided ample opportunity for astronomers to observe binary star systems. At least half of all “stars” in the sky are actually multiple systems, two or more stars in orbit about a common center of mass. Analysis of the orbital parameters of these systems provides vital information about a variety of stellar characteristics, including mass.

The methods used to analyze the orbital data vary somewhat depending on the geometry of the system, its distance from the observer, and the relative masses and luminosities of the components. Consequently, binary star systems are classified according to their specific observational characteristics.

  • Optical double. These systems are not actually binaries at all but simply two stars that lie along the same line of sight (i.e., they have similar right ascensions and declinations). As a consequence of their large physical separations, the stars are not gravitationally bound, and hence the system is not useful in determining stellar masses.

  • Visual binary. Both stars in the binary can be resolved independently, and if the orbital period is not prohibitively long, it is possible to monitor the motion of each member of the system. These systems provide important information about the angular separation of the stars from their mutual center of mass. If the distance to the binary is also known, the linear separations of the stars can then be calculated.

  • About the book

    Access options

    Review the options below to login to check your access.

    Purchase options

    eTextbook
    US$105.00
    Hardback
    US$105.00

    Have an access code?

    To redeem an access code, please log in with your personal login.

    If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

    Also available to purchase from these educational ebook suppliers