Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Preface

pp. v-vi

Authors

  • Add bookmark
  • Cite
  • Share

Summary

Because a point in space can be represented by a triple of real numbers, all geometric properties of spatial figures can be expressed in terms of real numbers. Hence one can theoretically understand geometry solely through analysis. But a true appreciation of geometry requires not only analytical technique but also intuition of geometric objects. The same holds for probability theory. The modern theory of probability is formulated in terms of measures and integrals and so is part of modern analysis from the logical viewpoint. But to really enjoy probability theory, one should grasp the orientation of development of the theory with intuitive insight into random phenomena. The purpose of this book is to explain basic probabilistic concepts rigorously as well as intuitively.

In Chapter 1 we restrict ourselves to trials with a finite number of outcomes. The concepts discussed here are those of elementary probability theory but are dealt with from the advanced standpoint. We hope that the reader appreciates how random phenomena are discussed mathematically without being annoyed with measure-theoretic complications.

In the subsequent chapters we expect the reader to be more or less familiar with basic facts in measure theory.

In Chapter 2 we discuss the properties of those probability measures that appear in this book.

In Chapter 3 we explain the fundamental concepts in probability theory such as events, random variables, independence, conditioning, and so on. We formulate these concepts on a perfect separable complete probability space. The additional conditions “perfectness” and “separability” are imposed to construct the theory in a more natural way. The reader will see that such conditions are satisfied in all problems appearing in applications.

In the standard textbook conditional probability is defined with respect to a-algebras of subsets of the sample space (Doob's definition). Here we first define it with respect to decompositions of the sample space (Kolmogorov's definition) to make it easier for the reader to understand its intuitive meaning and then explain Doob's definition and the relation between these two definitions.

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$84.00
Paperback
US$84.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers