Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 13: Gene Regulatory Networks and the Maximum Likelihood Method

Chapter 13: Gene Regulatory Networks and the Maximum Likelihood Method

pp. 186-195

Authors

, Harvey Mudd College, California, , Harvey Mudd College, California
Resources available Unlock the full potential of this textbook with additional resources. There are Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

The different cell types in the human body look different and do very different things: Compare, for example, liver cells and brain cells. How do they manage to be so different given that they have the same DNA? The answer is that cells regulate the expression of their genes – that is, they control when and where their genes are used to make protein. As a result, different cell types make a different complement of proteins.

In fact, the expression of a gene can be regulated by other genes. Biologists represent this using a gene regulatory network, a diagram that shows how genes interact. Figure 13.1 shows an example of such a network for some genes in the bacterium Bacillus subtilis. In the diagram, each gene is represented by a circular node. To show that one gene regulates another, we draw an edge, that is, a line with an arrow. This indicates that one gene (the one which the arrow is drawn from) regulates the transcription of the second (the one which the arrow is drawn to). The effect of this regulation might either be positive (upregulation) or negative (downregulation), but we won’t make a distinction between those two cases here.

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$63.00
Hardback
US$110.00
Paperback
US$63.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers