The purpose of this second edition is again a clear description of diffusion useful to engineers, chemists, and life scientists. Diffusion is a fascinating subject, as central to our daily lives as it is to the chemical industry. Diffusion equations describe the transport in living cells, the efficiency of distillation, and the dispersal of pollutants. Diffusion is responsible for gas absorption, for the fog formed by rain on snow, and for the dyeing of wool. Problems like these are easy to identify and fun to study.
Diffusion has the reputation of being a difficult subject, much harder than, say, fluid mechanics or solution thermodynamics. In fact, it is relatively simple. To prove this to yourself, try to explain a diffusion flux, a shear stress, and chemical potential to some friends who have little scientific training. I can easily explain a diffusion flux: It is how much diffuses per area per time. I have more trouble with a shear stress. Whether I say it is a momentum flux or the force in one direction caused by motion in a second direction, my friends look blank. I have never clearly explained chemical potentials to anyone.
However, past books on diffusion have enhanced its reputation as a difficult subject. These books fall into two distinct groups that are hard to read for different reasons. The first group is the traditional engineering text. Such texts are characterized by elaborate algebra, very complex examples, and turgid writing.
Review the options below to login to check your access.
Log in with your Cambridge Aspire website account to check access.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.