Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Chapter 4: Kinetics of a System of Particles

Chapter 4: Kinetics of a System of Particles

pp. 237-320

Authors

, Boston University
Resources available Unlock the full potential of this textbook with additional resources. There are free resources and Instructor restricted resources available for this textbook. Explore resources
  • Add bookmark
  • Cite
  • Share

Summary

The most incomprehensible thing about the world is that it is at all comprehensible.

- Albert Einstein (1879–1955) German and American Physicist

In Chapter 3 we discussed the important principles and methods used in the formulation, solution, and analysis of the motion of a single particle. In this chapter we extend the results of particle kinetics to systems consisting of two or more particles.

The first topic covered in this chapter is the center of mass of a system of particles. Using the definition of the center of mass, the linear momentum of a system of particles is defined. Then, using the definition of linear momentum, the velocity and acceleration of the center of mass of the system are defined.

The second topic covered in this chapter is the angular momentum of a system of particles. In particular, expressions for the angular momentum are derived relative to an arbitrary point, an inertially fixed point, and the center of mass of the system. Then, relationships between these three different forms of angular momentum are derived.

The third and fourth topics covered in this chapter are Newton's 2nd law and the rate of change of angular momentum for a system of particles. In particular, it is shown that the center of mass of the system satisfies Newton's 2nd law. Furthermore, the key results relating the rate of change of angular momentum for a system of particles to moment applied to the system are derived.

About the book

Access options

Review the options below to login to check your access.

Purchase options

eTextbook
US$79.00
Hardback
US$131.00
Paperback
US$79.00

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers